-
Previous Article
Traveling waves in quadratic autocatalytic systems with complexing agent
- DCDS-B Home
- This Issue
-
Next Article
Traveling wave solutions of a free boundary problem with latent heat effect
Recent developments on a singular predator-prey model
1. | Department of Mathematics, Tamkang University, Tamsui, New Taipei City 25137, Taiwan |
2. | Department of Applied Mathematics, Okayama University of Science, Okayama 700-0005, Japan |
This work is concerned with the dynamical behaviors of a singular predator-prey model. We first review some well-known results obtained recently. Then we give some new results on the spreading speed of the predator, the existence vs non-existence of traveling waves connecting the predator-free state to the co-existence state, and the existence vs non-existence of spatially periodic traveling waves to this singular predator-prey system.
References:
[1] |
A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics, 34, Cambridge University Press, Cambridge, 1995. |
[2] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Lecture Notes in Math., 446, Springer, Berlin, 1975, 5-49.
doi: 10.1007/BFb0070595. |
[3] |
Y.-Y. Chen, J.-S. Guo and C.-H. Yao,
Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.
doi: 10.1016/j.jmaa.2016.07.071. |
[4] |
F. Courchamp, M. Langlais and G. Sugihara,
Controls of rabbits to protect birds from cat predation, Biol. Conservations, 89 (1999), 219-225.
doi: 10.1016/S0006-3207(98)00131-1. |
[5] |
F. Courchamp and G. Sugihara, Modelling the biological control of an alien predator to protect island species from extinction, Ecological Appl., 9 (1999), 112-123. Google Scholar |
[6] |
Y. Du and S.-B. Hsu,
A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.
doi: 10.1016/j.jde.2004.05.010. |
[7] |
A. Ducrot and J.-S. Guo, Quenching behavior for a singular predator-prey model, Nonlinearity, 25 (2012), 2059-2073. Google Scholar |
[8] |
A. Ducrot, J.-S. Guo and M. Shimojo,
Behaviors of solutions for a singular prey-predator model and its shadow system, J. Dynam. Differential Equations, 30 (2018), 1063-1079.
doi: 10.1007/s10884-017-9587-1. |
[9] |
A. Ducrot and M. Langlais,
A singular reaction-diffusion system modelling prey-predator interactions: Invasion and co-extinction waves, J. Differential Equations, 253 (2012), 502-532.
doi: 10.1016/j.jde.2012.04.005. |
[10] |
A. Ducrot and M. Langlais,
Global weak solution for a singular two component reaction-diffusion system, Bull. Lond. Math. Soc., 46 (2014), 1-13.
doi: 10.1112/blms/bdt058. |
[11] |
S. Gaucel and M. Langlais,
Some remarks on a singular reaction-diffusion arising in predator-prey modelling, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 61-72.
doi: 10.3934/dcdsb.2007.8.61. |
[12] |
J.-S. Guo and M. Shimojo,
Spatio-temporal oscillation for a singular predator-prey model, J. Math. Anal. Appl., 459 (2018), 1-9.
doi: 10.1016/j.jmaa.2017.10.080. |
[13] |
J. Hainzl,
Multiparameter bifurcation of a predator-prey system, SIAM J. Math. Anal., 23 (1992), 150-180.
doi: 10.1137/0523008. |
[14] |
B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, Theory and Applications of Hopf Bifurcation, London Mathematical Society Lecture Note Series, 41, Cambridge University Press, Cambridge-New York, 1981. |
[15] |
S.-B. Hsu and T.-W. Hwang,
Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.
doi: 10.1137/S0036139993253201. |
[16] |
S.-B. Hsu and T.-W. Hwang,
Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type, Canad. Appl. Math. Quart., 6 (1998), 91-117.
|
[17] |
G. Lin,
Spreading speeds of a Lotka-Volterra predator-prey system: The role of the predator, Nonlinear Anal., 74 (2011), 2448-2461.
doi: 10.1016/j.na.2010.11.046. |
[18] |
S. Ma,
Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.
doi: 10.1006/jdeq.2000.3846. |
[19] |
J. D. Murray, Mathematical Biology. II. Spatial Models and Biomedical Applications, Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003.
doi: 10.1007/b98869. |
[20] |
S. Pan,
Asymptotic spreading in a Lotka-Volterra predator-prey system, J. Math. Anal. Appl., 407 (2013), 230-236.
doi: 10.1016/j.jmaa.2013.05.031. |
[21] |
S. Pan,
Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 46-51.
doi: 10.1016/j.aml.2017.05.014. |
[22] |
H. F. Weinberger,
Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.
doi: 10.1137/0513028. |
[23] |
H. F. Weinberger, M. A. Lewis and B. Li,
Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.
doi: 10.1007/s002850200145. |
[24] |
W. Zuo and J. Shi,
Traveling wave solutions of a diffusive ratio-dependent Holling-Tanner system with distributed delay, Comm. Pure. Appl. Anal., 17 (2018), 1179-1200.
doi: 10.3934/cpaa.2018057. |
show all references
References:
[1] |
A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics, 34, Cambridge University Press, Cambridge, 1995. |
[2] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Lecture Notes in Math., 446, Springer, Berlin, 1975, 5-49.
doi: 10.1007/BFb0070595. |
[3] |
Y.-Y. Chen, J.-S. Guo and C.-H. Yao,
Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.
doi: 10.1016/j.jmaa.2016.07.071. |
[4] |
F. Courchamp, M. Langlais and G. Sugihara,
Controls of rabbits to protect birds from cat predation, Biol. Conservations, 89 (1999), 219-225.
doi: 10.1016/S0006-3207(98)00131-1. |
[5] |
F. Courchamp and G. Sugihara, Modelling the biological control of an alien predator to protect island species from extinction, Ecological Appl., 9 (1999), 112-123. Google Scholar |
[6] |
Y. Du and S.-B. Hsu,
A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.
doi: 10.1016/j.jde.2004.05.010. |
[7] |
A. Ducrot and J.-S. Guo, Quenching behavior for a singular predator-prey model, Nonlinearity, 25 (2012), 2059-2073. Google Scholar |
[8] |
A. Ducrot, J.-S. Guo and M. Shimojo,
Behaviors of solutions for a singular prey-predator model and its shadow system, J. Dynam. Differential Equations, 30 (2018), 1063-1079.
doi: 10.1007/s10884-017-9587-1. |
[9] |
A. Ducrot and M. Langlais,
A singular reaction-diffusion system modelling prey-predator interactions: Invasion and co-extinction waves, J. Differential Equations, 253 (2012), 502-532.
doi: 10.1016/j.jde.2012.04.005. |
[10] |
A. Ducrot and M. Langlais,
Global weak solution for a singular two component reaction-diffusion system, Bull. Lond. Math. Soc., 46 (2014), 1-13.
doi: 10.1112/blms/bdt058. |
[11] |
S. Gaucel and M. Langlais,
Some remarks on a singular reaction-diffusion arising in predator-prey modelling, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 61-72.
doi: 10.3934/dcdsb.2007.8.61. |
[12] |
J.-S. Guo and M. Shimojo,
Spatio-temporal oscillation for a singular predator-prey model, J. Math. Anal. Appl., 459 (2018), 1-9.
doi: 10.1016/j.jmaa.2017.10.080. |
[13] |
J. Hainzl,
Multiparameter bifurcation of a predator-prey system, SIAM J. Math. Anal., 23 (1992), 150-180.
doi: 10.1137/0523008. |
[14] |
B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, Theory and Applications of Hopf Bifurcation, London Mathematical Society Lecture Note Series, 41, Cambridge University Press, Cambridge-New York, 1981. |
[15] |
S.-B. Hsu and T.-W. Hwang,
Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.
doi: 10.1137/S0036139993253201. |
[16] |
S.-B. Hsu and T.-W. Hwang,
Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type, Canad. Appl. Math. Quart., 6 (1998), 91-117.
|
[17] |
G. Lin,
Spreading speeds of a Lotka-Volterra predator-prey system: The role of the predator, Nonlinear Anal., 74 (2011), 2448-2461.
doi: 10.1016/j.na.2010.11.046. |
[18] |
S. Ma,
Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.
doi: 10.1006/jdeq.2000.3846. |
[19] |
J. D. Murray, Mathematical Biology. II. Spatial Models and Biomedical Applications, Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003.
doi: 10.1007/b98869. |
[20] |
S. Pan,
Asymptotic spreading in a Lotka-Volterra predator-prey system, J. Math. Anal. Appl., 407 (2013), 230-236.
doi: 10.1016/j.jmaa.2013.05.031. |
[21] |
S. Pan,
Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 46-51.
doi: 10.1016/j.aml.2017.05.014. |
[22] |
H. F. Weinberger,
Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.
doi: 10.1137/0513028. |
[23] |
H. F. Weinberger, M. A. Lewis and B. Li,
Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.
doi: 10.1007/s002850200145. |
[24] |
W. Zuo and J. Shi,
Traveling wave solutions of a diffusive ratio-dependent Holling-Tanner system with distributed delay, Comm. Pure. Appl. Anal., 17 (2018), 1179-1200.
doi: 10.3934/cpaa.2018057. |
[1] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[2] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[3] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[4] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[5] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[6] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[7] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[8] |
Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329 |
[9] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[10] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[11] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[12] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[13] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[14] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[15] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[16] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[17] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[18] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[19] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[20] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]