doi: 10.3934/dcdsb.2020041

Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response

1. 

School of Mathematics and Systems Science, Beihang University, Beijing 100191, China

2. 

Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA

* Corresponding author: Shigui Ruan

Received  July 2019 Revised  October 2019 Published  February 2020

Fund Project: Research of the first author was supported by China Scholarship Council (201806020127) and the Academic Excellence Foundation of BUAA for Ph.D. Students. Research of the second author was supported by Beijing Natural Science Foundation (Z180005) and National Natural Science Foundation of China (11422111)

In this paper, we study the global dynamics of a density-dependent predator-prey system with ratio-dependent functional response. The main features and challenges are that the origin of this model is a degenerate equilibrium of higher order and there are multiple positive equilibria. Firstly, local qualitative behavior of the system around the origin is explicitly described. Then, based on the dynamics around the origin and other equilibria, global qualitative analysis of the model is carried out. Finally, the existence of Bogdanov-Takens bifurcation (cusp case) of codimension two is analyzed. This shows that the system undergoes various bifurcation phenomena, including saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation along with different topological sectors near the degenerate origin. Numerical simulations are presented to illustrate the theoretical results.

Citation: Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020041
References:
[1]

H. R. Akcakaya, Population cycles of mammals: Evidence for a ratio-dependent predation hypothesis, Ecol. Monogr., 62 (1992), 119-142.  doi: 10.2307/2937172.  Google Scholar

[2]

H. R. AkcakayaR. Arditi and L. R. Ginzburg, Ratio-dependent prediction: An abstraction that works, Ecology, 76 (1995), 995-1004.  doi: 10.2307/1939362.  Google Scholar

[3]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311-326.  doi: 10.1016/S0022-5193(89)80211-5.  Google Scholar

[4]

A. D. Bazykin, Structural and Dynamic Stability of Model Predator-Prey Systems, Int. Inst. Appl. Syst. Analysis, Laxenburg, 1976. Google Scholar

[5]

A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 11, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/9789812798725.  Google Scholar

[6]

F. BerezovskayaG. Karev and R. Arditi, Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 43 (2001), 221-246.  doi: 10.1007/s002850000078.  Google Scholar

[7]

R. Bogdonov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Mathe. Soviet., 1 (1981), 373-388.   Google Scholar

[8]

R. Bogdonov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Selecta Mathe. Soviet., 1 (1981), 389-421.   Google Scholar

[9] S. N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[10]

A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: A metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552-1563.   Google Scholar

[11]

J. Hainzl, Stability and Hopf bifurcaiton in a predator-prey system with several parameters, SIAM J. Appl. Math., 48 (1998), 170-190.  doi: 10.1137/0148008.  Google Scholar

[12]

J. Hainzl, Multiparameter bifurcation of a predator-prey system, SIAM J. Math. Anal., 23 (1992), 150-180.  doi: 10.1137/0523008.  Google Scholar

[13]

J. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980.  Google Scholar

[14]

S. B. HsuT. W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol., 42 (2001), 489-506.  doi: 10.1007/s002850100079.  Google Scholar

[15]

J. HuangS. Ruan and J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differential Equations, 257 (2014), 1721-1752.  doi: 10.1016/j.jde.2014.04.024.  Google Scholar

[16]

J. HuangY. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.  doi: 10.3934/dcdsb.2013.18.2101.  Google Scholar

[17]

X. Jiang, Z. She, Z. Feng and X. Zheng, Structural stability of a density dependent predator-prey system with ratio-dependent functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 21pp. doi: 10.1142/S0218127417502224.  Google Scholar

[18]

C. JostO. Arino and R. Arditi, About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 61 (1999), 19-32.  doi: 10.1006/bulm.1998.0072.  Google Scholar

[19]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependence predator-prey system, J. Math. Biol., 36 (1998), 389-406.  doi: 10.1007/s002850050105.  Google Scholar

[20]

B. Li and Y. Kuang, Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM J. Appl. Math., 67 (2007), 1453-1464.  doi: 10.1137/060662460.  Google Scholar

[21]

P. Parrilo and S. Lall, Semidefinite programming relaxations and algebraic optimization in control, European J. Control, 9 (2003), 307-321.  doi: 10.3166/ejc.9.307-321.  Google Scholar

[22]

S. RuanY. Tang and W. Zhang, Computing the heteroclinic bifurcation curves in predator-prey systems with ratio-dependent functional response, J. Math. Biol., 57 (2008), 223-241.  doi: 10.1007/s00285-007-0153-z.  Google Scholar

[23]

S. RuanY. Tang and W. Zhang, Versal unfoldings of predator-prey systems with ratio-dependent functional response, J. Differential Equations, 249 (2010), 1410-1435.  doi: 10.1016/j.jde.2010.06.015.  Google Scholar

[24]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.  doi: 10.1137/S0036139999361896.  Google Scholar

[25]

Z. SheH. LiB. XueZ. Zheng and B. Xia, Discovering polynomial Lyapunov functions for continuous dynamical systems, J. Symbolic Comput., 58 (2013), 41-63.  doi: 10.1016/j.jsc.2013.06.003.  Google Scholar

[26]

F. Takens, Forced oscillations and bifurcations, in Applications of Global Analysis, I, Comm. Math. Inst. Rijksuniv. Utrecht, 3, Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974, 1-59. doi: 10.1201/9781420034288-1.  Google Scholar

[27]

Y. Tang and W. Zhang, Heteroclinic bifurcation in a ratio-dependent predator-prey system, J. Math. Biol., 50 (2005), 699-712.  doi: 10.1007/s00285-004-0307-1.  Google Scholar

[28]

S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos, Texts in Applied Mathematics, 2, Spring-Verlag, New York, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar

[29]

D. Xiao and S. Ruan, Bogdoanov-Takens bifurcations in predator-prey systems with constant rate harvesting, in Differential Equations with Applications to Biology, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999,493-506.  Google Scholar

[30]

D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268-290.  doi: 10.1007/s002850100097.  Google Scholar

[31]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, American Mathematical Society, Providence, RI, 1992.  Google Scholar

[32]

X. ZhengZ. SheQ. Liang and M. Li, Inner approximations of domains of attraction for a class of switched systems by computing Lyapunov-like functions, Internat. J. Robust Nonlinear Control, 28 (2018), 2191-2208.  doi: 10.1002/rnc.4010.  Google Scholar

show all references

References:
[1]

H. R. Akcakaya, Population cycles of mammals: Evidence for a ratio-dependent predation hypothesis, Ecol. Monogr., 62 (1992), 119-142.  doi: 10.2307/2937172.  Google Scholar

[2]

H. R. AkcakayaR. Arditi and L. R. Ginzburg, Ratio-dependent prediction: An abstraction that works, Ecology, 76 (1995), 995-1004.  doi: 10.2307/1939362.  Google Scholar

[3]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311-326.  doi: 10.1016/S0022-5193(89)80211-5.  Google Scholar

[4]

A. D. Bazykin, Structural and Dynamic Stability of Model Predator-Prey Systems, Int. Inst. Appl. Syst. Analysis, Laxenburg, 1976. Google Scholar

[5]

A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 11, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/9789812798725.  Google Scholar

[6]

F. BerezovskayaG. Karev and R. Arditi, Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 43 (2001), 221-246.  doi: 10.1007/s002850000078.  Google Scholar

[7]

R. Bogdonov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Mathe. Soviet., 1 (1981), 373-388.   Google Scholar

[8]

R. Bogdonov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Selecta Mathe. Soviet., 1 (1981), 389-421.   Google Scholar

[9] S. N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[10]

A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: A metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552-1563.   Google Scholar

[11]

J. Hainzl, Stability and Hopf bifurcaiton in a predator-prey system with several parameters, SIAM J. Appl. Math., 48 (1998), 170-190.  doi: 10.1137/0148008.  Google Scholar

[12]

J. Hainzl, Multiparameter bifurcation of a predator-prey system, SIAM J. Math. Anal., 23 (1992), 150-180.  doi: 10.1137/0523008.  Google Scholar

[13]

J. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980.  Google Scholar

[14]

S. B. HsuT. W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol., 42 (2001), 489-506.  doi: 10.1007/s002850100079.  Google Scholar

[15]

J. HuangS. Ruan and J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differential Equations, 257 (2014), 1721-1752.  doi: 10.1016/j.jde.2014.04.024.  Google Scholar

[16]

J. HuangY. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.  doi: 10.3934/dcdsb.2013.18.2101.  Google Scholar

[17]

X. Jiang, Z. She, Z. Feng and X. Zheng, Structural stability of a density dependent predator-prey system with ratio-dependent functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 21pp. doi: 10.1142/S0218127417502224.  Google Scholar

[18]

C. JostO. Arino and R. Arditi, About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 61 (1999), 19-32.  doi: 10.1006/bulm.1998.0072.  Google Scholar

[19]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependence predator-prey system, J. Math. Biol., 36 (1998), 389-406.  doi: 10.1007/s002850050105.  Google Scholar

[20]

B. Li and Y. Kuang, Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM J. Appl. Math., 67 (2007), 1453-1464.  doi: 10.1137/060662460.  Google Scholar

[21]

P. Parrilo and S. Lall, Semidefinite programming relaxations and algebraic optimization in control, European J. Control, 9 (2003), 307-321.  doi: 10.3166/ejc.9.307-321.  Google Scholar

[22]

S. RuanY. Tang and W. Zhang, Computing the heteroclinic bifurcation curves in predator-prey systems with ratio-dependent functional response, J. Math. Biol., 57 (2008), 223-241.  doi: 10.1007/s00285-007-0153-z.  Google Scholar

[23]

S. RuanY. Tang and W. Zhang, Versal unfoldings of predator-prey systems with ratio-dependent functional response, J. Differential Equations, 249 (2010), 1410-1435.  doi: 10.1016/j.jde.2010.06.015.  Google Scholar

[24]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.  doi: 10.1137/S0036139999361896.  Google Scholar

[25]

Z. SheH. LiB. XueZ. Zheng and B. Xia, Discovering polynomial Lyapunov functions for continuous dynamical systems, J. Symbolic Comput., 58 (2013), 41-63.  doi: 10.1016/j.jsc.2013.06.003.  Google Scholar

[26]

F. Takens, Forced oscillations and bifurcations, in Applications of Global Analysis, I, Comm. Math. Inst. Rijksuniv. Utrecht, 3, Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974, 1-59. doi: 10.1201/9781420034288-1.  Google Scholar

[27]

Y. Tang and W. Zhang, Heteroclinic bifurcation in a ratio-dependent predator-prey system, J. Math. Biol., 50 (2005), 699-712.  doi: 10.1007/s00285-004-0307-1.  Google Scholar

[28]

S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos, Texts in Applied Mathematics, 2, Spring-Verlag, New York, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar

[29]

D. Xiao and S. Ruan, Bogdoanov-Takens bifurcations in predator-prey systems with constant rate harvesting, in Differential Equations with Applications to Biology, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999,493-506.  Google Scholar

[30]

D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268-290.  doi: 10.1007/s002850100097.  Google Scholar

[31]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, American Mathematical Society, Providence, RI, 1992.  Google Scholar

[32]

X. ZhengZ. SheQ. Liang and M. Li, Inner approximations of domains of attraction for a class of switched systems by computing Lyapunov-like functions, Internat. J. Robust Nonlinear Control, 28 (2018), 2191-2208.  doi: 10.1002/rnc.4010.  Google Scholar

Figure 1.  Phase diagram of system (2.2) with $ s = b = 2,\; d = 0.5 $ and $ r = 0.2 $
Figure 2.  Saddle-node $ (0,0) $ of system (2.11) with $ s = 2,d = 0.5,b = 1,r = 1 $
Figure 3.  Phase diagram of system (2.2) with $ s = 2,d = 0.5,b = 1,r = 1 $
Figure 4.  Phase diagram of system (1.3) with $ s = r = 2,d = 0.1,b = 1 $
Figure 5.  Phase diagram of system (1.3) with $ s = 3,d = 1.5,b = 1,r = 1 $
Figure 6.  Phase diagram of system (1.3) with $ b = s = 2,d = 1.5,r = 2 $
Figure 7.  Phase diagram of system (1.3) with $ s = 2,d = 0.625,r = 1,b = 0.8 $
Figure 8.  Phase diagram of system (1.3) with $ s = 1,d = 0.5,b = 2.5,r = 1 $
Figure 9.  Phase diagram of system (1.3) with $ s = 0.8,d = 0.5,r = 1,b = 1 $
Figure 10.  Phase diagram of system (1.3) with $ s = 1.75625,d = 0.2,r = 2,b = 3 $
Figure 11.  Phase diagram of system (1.3) with $ s = 1.5,d = 0.1,r = 2,b = 2 $
Figure 12.  Bifurcation sets and the corresponding phase portraits of system (4.6)
Figure 13.  (Ⅰ): When $ u_1 = -0.1 $ and $ u_2 = 0.515 $ lie in the region Ⅰ, there exists no positive equilibrium; (Ⅱ): When $ u_1 = -0.1 $ and $ u_2 = 0.55 $ lie in the region Ⅱ, there exist a saddle point and an unstable focus; (Ⅲ): When $ u_1 = -0.1 $ and $ u_2 = 0.605 $ lie in the region Ⅲ, there exist a saddle point, a stable focus and an unstable limit cycle; (Ⅳ): When $ u_1 = -0.1 $ and $ u_2 = 0.8 $ lie in the region Ⅳ, there exist a saddle point and an stable focus
Table 1.  The global dymamics of system (1.3)
Condition $ 1 $ Condition $ 2 $ Global Results Hopf bifurcation
$ (H0) $ $ d<1 $ $ (K1) $ Theorem 3.3 Does not exist
$ (K2) $ Theorem 3.3 Does not exist
$ (K3) $ Theorem 3.3 Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ d>1 $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.4 Does not exist
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ Theorem 3.5 Does not exist
$ (H1) $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.6 Remark 1
$ (K3) $ Theorem 3.7 Does not exist
$ (K4) $ Theorem 3.8 Does not exist
$ (H2)\wedge (H6) $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.9 Remark 3
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ (H3)\wedge (H5) $ $ (K1) $ Theorem 3.10 Does not exist
$ (K2) $ Theorem 3.10 Does not exist
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ (H4) $ $ (K1) $ Theorem 3.11 Remark 5
$ (K2) $ Theorem 3.11 Remark 5
$ (K3) $ Theorem 3.11 Does not exist
$ (K4) $ $ \emptyset $ Does not exist
Here $(H0):=\overline{(H1)\vee (H2)\vee (H3)\vee (H4)}$,
$(K1):=\{b-1-bd\geq0, s-1-bd\geq0\}$, $(K2):=\{b-1-bd<0, s-1-bd\geq 0\}$,
$(K3):=\{b-1-bd\geq0,s-1-bd<0\}$ and $(K4):=\{b-1-bd<0, s-1-bd<0\}$
Condition $ 1 $ Condition $ 2 $ Global Results Hopf bifurcation
$ (H0) $ $ d<1 $ $ (K1) $ Theorem 3.3 Does not exist
$ (K2) $ Theorem 3.3 Does not exist
$ (K3) $ Theorem 3.3 Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ d>1 $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.4 Does not exist
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ Theorem 3.5 Does not exist
$ (H1) $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.6 Remark 1
$ (K3) $ Theorem 3.7 Does not exist
$ (K4) $ Theorem 3.8 Does not exist
$ (H2)\wedge (H6) $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.9 Remark 3
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ (H3)\wedge (H5) $ $ (K1) $ Theorem 3.10 Does not exist
$ (K2) $ Theorem 3.10 Does not exist
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ (H4) $ $ (K1) $ Theorem 3.11 Remark 5
$ (K2) $ Theorem 3.11 Remark 5
$ (K3) $ Theorem 3.11 Does not exist
$ (K4) $ $ \emptyset $ Does not exist
Here $(H0):=\overline{(H1)\vee (H2)\vee (H3)\vee (H4)}$,
$(K1):=\{b-1-bd\geq0, s-1-bd\geq0\}$, $(K2):=\{b-1-bd<0, s-1-bd\geq 0\}$,
$(K3):=\{b-1-bd\geq0,s-1-bd<0\}$ and $(K4):=\{b-1-bd<0, s-1-bd<0\}$
[1]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[2]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[3]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[4]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[5]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[6]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[7]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[8]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[9]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[10]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[11]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[12]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[13]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[14]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[15]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[16]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[17]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[18]

Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046

[19]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[20]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (268)
  • HTML views (456)
  • Cited by (0)

Other articles
by authors

[Back to Top]