April  2021, 26(4): 1967-1990. doi: 10.3934/dcdsb.2020041

Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response

1. 

School of Mathematics and Systems Science, Beihang University, Beijing 100191, China

2. 

Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA

* Corresponding author: Shigui Ruan

Received  July 2019 Revised  October 2019 Published  February 2020

Fund Project: Research of the first author was supported by China Scholarship Council (201806020127) and the Academic Excellence Foundation of BUAA for Ph.D. Students. Research of the second author was supported by Beijing Natural Science Foundation (Z180005) and National Natural Science Foundation of China (11422111)

In this paper, we study the global dynamics of a density-dependent predator-prey system with ratio-dependent functional response. The main features and challenges are that the origin of this model is a degenerate equilibrium of higher order and there are multiple positive equilibria. Firstly, local qualitative behavior of the system around the origin is explicitly described. Then, based on the dynamics around the origin and other equilibria, global qualitative analysis of the model is carried out. Finally, the existence of Bogdanov-Takens bifurcation (cusp case) of codimension two is analyzed. This shows that the system undergoes various bifurcation phenomena, including saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation along with different topological sectors near the degenerate origin. Numerical simulations are presented to illustrate the theoretical results.

Citation: Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1967-1990. doi: 10.3934/dcdsb.2020041
References:
[1]

H. R. Akcakaya, Population cycles of mammals: Evidence for a ratio-dependent predation hypothesis, Ecol. Monogr., 62 (1992), 119-142.  doi: 10.2307/2937172.  Google Scholar

[2]

H. R. AkcakayaR. Arditi and L. R. Ginzburg, Ratio-dependent prediction: An abstraction that works, Ecology, 76 (1995), 995-1004.  doi: 10.2307/1939362.  Google Scholar

[3]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311-326.  doi: 10.1016/S0022-5193(89)80211-5.  Google Scholar

[4]

A. D. Bazykin, Structural and Dynamic Stability of Model Predator-Prey Systems, Int. Inst. Appl. Syst. Analysis, Laxenburg, 1976. Google Scholar

[5]

A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 11, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/9789812798725.  Google Scholar

[6]

F. BerezovskayaG. Karev and R. Arditi, Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 43 (2001), 221-246.  doi: 10.1007/s002850000078.  Google Scholar

[7]

R. Bogdonov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Mathe. Soviet., 1 (1981), 373-388.   Google Scholar

[8]

R. Bogdonov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Selecta Mathe. Soviet., 1 (1981), 389-421.   Google Scholar

[9] S. N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[10]

A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: A metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552-1563.   Google Scholar

[11]

J. Hainzl, Stability and Hopf bifurcaiton in a predator-prey system with several parameters, SIAM J. Appl. Math., 48 (1998), 170-190.  doi: 10.1137/0148008.  Google Scholar

[12]

J. Hainzl, Multiparameter bifurcation of a predator-prey system, SIAM J. Math. Anal., 23 (1992), 150-180.  doi: 10.1137/0523008.  Google Scholar

[13]

J. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980.  Google Scholar

[14]

S. B. HsuT. W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol., 42 (2001), 489-506.  doi: 10.1007/s002850100079.  Google Scholar

[15]

J. HuangS. Ruan and J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differential Equations, 257 (2014), 1721-1752.  doi: 10.1016/j.jde.2014.04.024.  Google Scholar

[16]

J. HuangY. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.  doi: 10.3934/dcdsb.2013.18.2101.  Google Scholar

[17]

X. Jiang, Z. She, Z. Feng and X. Zheng, Structural stability of a density dependent predator-prey system with ratio-dependent functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 21pp. doi: 10.1142/S0218127417502224.  Google Scholar

[18]

C. JostO. Arino and R. Arditi, About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 61 (1999), 19-32.  doi: 10.1006/bulm.1998.0072.  Google Scholar

[19]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependence predator-prey system, J. Math. Biol., 36 (1998), 389-406.  doi: 10.1007/s002850050105.  Google Scholar

[20]

B. Li and Y. Kuang, Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM J. Appl. Math., 67 (2007), 1453-1464.  doi: 10.1137/060662460.  Google Scholar

[21]

P. Parrilo and S. Lall, Semidefinite programming relaxations and algebraic optimization in control, European J. Control, 9 (2003), 307-321.  doi: 10.3166/ejc.9.307-321.  Google Scholar

[22]

S. RuanY. Tang and W. Zhang, Computing the heteroclinic bifurcation curves in predator-prey systems with ratio-dependent functional response, J. Math. Biol., 57 (2008), 223-241.  doi: 10.1007/s00285-007-0153-z.  Google Scholar

[23]

S. RuanY. Tang and W. Zhang, Versal unfoldings of predator-prey systems with ratio-dependent functional response, J. Differential Equations, 249 (2010), 1410-1435.  doi: 10.1016/j.jde.2010.06.015.  Google Scholar

[24]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.  doi: 10.1137/S0036139999361896.  Google Scholar

[25]

Z. SheH. LiB. XueZ. Zheng and B. Xia, Discovering polynomial Lyapunov functions for continuous dynamical systems, J. Symbolic Comput., 58 (2013), 41-63.  doi: 10.1016/j.jsc.2013.06.003.  Google Scholar

[26]

F. Takens, Forced oscillations and bifurcations, in Applications of Global Analysis, I, Comm. Math. Inst. Rijksuniv. Utrecht, 3, Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974, 1-59. doi: 10.1201/9781420034288-1.  Google Scholar

[27]

Y. Tang and W. Zhang, Heteroclinic bifurcation in a ratio-dependent predator-prey system, J. Math. Biol., 50 (2005), 699-712.  doi: 10.1007/s00285-004-0307-1.  Google Scholar

[28]

S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos, Texts in Applied Mathematics, 2, Spring-Verlag, New York, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar

[29]

D. Xiao and S. Ruan, Bogdoanov-Takens bifurcations in predator-prey systems with constant rate harvesting, in Differential Equations with Applications to Biology, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999,493-506.  Google Scholar

[30]

D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268-290.  doi: 10.1007/s002850100097.  Google Scholar

[31]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, American Mathematical Society, Providence, RI, 1992.  Google Scholar

[32]

X. ZhengZ. SheQ. Liang and M. Li, Inner approximations of domains of attraction for a class of switched systems by computing Lyapunov-like functions, Internat. J. Robust Nonlinear Control, 28 (2018), 2191-2208.  doi: 10.1002/rnc.4010.  Google Scholar

show all references

References:
[1]

H. R. Akcakaya, Population cycles of mammals: Evidence for a ratio-dependent predation hypothesis, Ecol. Monogr., 62 (1992), 119-142.  doi: 10.2307/2937172.  Google Scholar

[2]

H. R. AkcakayaR. Arditi and L. R. Ginzburg, Ratio-dependent prediction: An abstraction that works, Ecology, 76 (1995), 995-1004.  doi: 10.2307/1939362.  Google Scholar

[3]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311-326.  doi: 10.1016/S0022-5193(89)80211-5.  Google Scholar

[4]

A. D. Bazykin, Structural and Dynamic Stability of Model Predator-Prey Systems, Int. Inst. Appl. Syst. Analysis, Laxenburg, 1976. Google Scholar

[5]

A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 11, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/9789812798725.  Google Scholar

[6]

F. BerezovskayaG. Karev and R. Arditi, Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 43 (2001), 221-246.  doi: 10.1007/s002850000078.  Google Scholar

[7]

R. Bogdonov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Mathe. Soviet., 1 (1981), 373-388.   Google Scholar

[8]

R. Bogdonov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Selecta Mathe. Soviet., 1 (1981), 389-421.   Google Scholar

[9] S. N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[10]

A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: A metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552-1563.   Google Scholar

[11]

J. Hainzl, Stability and Hopf bifurcaiton in a predator-prey system with several parameters, SIAM J. Appl. Math., 48 (1998), 170-190.  doi: 10.1137/0148008.  Google Scholar

[12]

J. Hainzl, Multiparameter bifurcation of a predator-prey system, SIAM J. Math. Anal., 23 (1992), 150-180.  doi: 10.1137/0523008.  Google Scholar

[13]

J. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980.  Google Scholar

[14]

S. B. HsuT. W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol., 42 (2001), 489-506.  doi: 10.1007/s002850100079.  Google Scholar

[15]

J. HuangS. Ruan and J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differential Equations, 257 (2014), 1721-1752.  doi: 10.1016/j.jde.2014.04.024.  Google Scholar

[16]

J. HuangY. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.  doi: 10.3934/dcdsb.2013.18.2101.  Google Scholar

[17]

X. Jiang, Z. She, Z. Feng and X. Zheng, Structural stability of a density dependent predator-prey system with ratio-dependent functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 21pp. doi: 10.1142/S0218127417502224.  Google Scholar

[18]

C. JostO. Arino and R. Arditi, About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 61 (1999), 19-32.  doi: 10.1006/bulm.1998.0072.  Google Scholar

[19]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependence predator-prey system, J. Math. Biol., 36 (1998), 389-406.  doi: 10.1007/s002850050105.  Google Scholar

[20]

B. Li and Y. Kuang, Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM J. Appl. Math., 67 (2007), 1453-1464.  doi: 10.1137/060662460.  Google Scholar

[21]

P. Parrilo and S. Lall, Semidefinite programming relaxations and algebraic optimization in control, European J. Control, 9 (2003), 307-321.  doi: 10.3166/ejc.9.307-321.  Google Scholar

[22]

S. RuanY. Tang and W. Zhang, Computing the heteroclinic bifurcation curves in predator-prey systems with ratio-dependent functional response, J. Math. Biol., 57 (2008), 223-241.  doi: 10.1007/s00285-007-0153-z.  Google Scholar

[23]

S. RuanY. Tang and W. Zhang, Versal unfoldings of predator-prey systems with ratio-dependent functional response, J. Differential Equations, 249 (2010), 1410-1435.  doi: 10.1016/j.jde.2010.06.015.  Google Scholar

[24]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.  doi: 10.1137/S0036139999361896.  Google Scholar

[25]

Z. SheH. LiB. XueZ. Zheng and B. Xia, Discovering polynomial Lyapunov functions for continuous dynamical systems, J. Symbolic Comput., 58 (2013), 41-63.  doi: 10.1016/j.jsc.2013.06.003.  Google Scholar

[26]

F. Takens, Forced oscillations and bifurcations, in Applications of Global Analysis, I, Comm. Math. Inst. Rijksuniv. Utrecht, 3, Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974, 1-59. doi: 10.1201/9781420034288-1.  Google Scholar

[27]

Y. Tang and W. Zhang, Heteroclinic bifurcation in a ratio-dependent predator-prey system, J. Math. Biol., 50 (2005), 699-712.  doi: 10.1007/s00285-004-0307-1.  Google Scholar

[28]

S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos, Texts in Applied Mathematics, 2, Spring-Verlag, New York, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar

[29]

D. Xiao and S. Ruan, Bogdoanov-Takens bifurcations in predator-prey systems with constant rate harvesting, in Differential Equations with Applications to Biology, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999,493-506.  Google Scholar

[30]

D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268-290.  doi: 10.1007/s002850100097.  Google Scholar

[31]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, American Mathematical Society, Providence, RI, 1992.  Google Scholar

[32]

X. ZhengZ. SheQ. Liang and M. Li, Inner approximations of domains of attraction for a class of switched systems by computing Lyapunov-like functions, Internat. J. Robust Nonlinear Control, 28 (2018), 2191-2208.  doi: 10.1002/rnc.4010.  Google Scholar

Figure 1.  Phase diagram of system (2.2) with $ s = b = 2,\; d = 0.5 $ and $ r = 0.2 $
Figure 2.  Saddle-node $ (0,0) $ of system (2.11) with $ s = 2,d = 0.5,b = 1,r = 1 $
Figure 3.  Phase diagram of system (2.2) with $ s = 2,d = 0.5,b = 1,r = 1 $
Figure 4.  Phase diagram of system (1.3) with $ s = r = 2,d = 0.1,b = 1 $
Figure 5.  Phase diagram of system (1.3) with $ s = 3,d = 1.5,b = 1,r = 1 $
Figure 6.  Phase diagram of system (1.3) with $ b = s = 2,d = 1.5,r = 2 $
Figure 7.  Phase diagram of system (1.3) with $ s = 2,d = 0.625,r = 1,b = 0.8 $
Figure 8.  Phase diagram of system (1.3) with $ s = 1,d = 0.5,b = 2.5,r = 1 $
Figure 9.  Phase diagram of system (1.3) with $ s = 0.8,d = 0.5,r = 1,b = 1 $
Figure 10.  Phase diagram of system (1.3) with $ s = 1.75625,d = 0.2,r = 2,b = 3 $
Figure 11.  Phase diagram of system (1.3) with $ s = 1.5,d = 0.1,r = 2,b = 2 $
Figure 12.  Bifurcation sets and the corresponding phase portraits of system (4.6)
Figure 13.  (Ⅰ): When $ u_1 = -0.1 $ and $ u_2 = 0.515 $ lie in the region Ⅰ, there exists no positive equilibrium; (Ⅱ): When $ u_1 = -0.1 $ and $ u_2 = 0.55 $ lie in the region Ⅱ, there exist a saddle point and an unstable focus; (Ⅲ): When $ u_1 = -0.1 $ and $ u_2 = 0.605 $ lie in the region Ⅲ, there exist a saddle point, a stable focus and an unstable limit cycle; (Ⅳ): When $ u_1 = -0.1 $ and $ u_2 = 0.8 $ lie in the region Ⅳ, there exist a saddle point and an stable focus
Table 1.  The global dymamics of system (1.3)
Condition $ 1 $ Condition $ 2 $ Global Results Hopf bifurcation
$ (H0) $ $ d<1 $ $ (K1) $ Theorem 3.3 Does not exist
$ (K2) $ Theorem 3.3 Does not exist
$ (K3) $ Theorem 3.3 Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ d>1 $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.4 Does not exist
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ Theorem 3.5 Does not exist
$ (H1) $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.6 Remark 1
$ (K3) $ Theorem 3.7 Does not exist
$ (K4) $ Theorem 3.8 Does not exist
$ (H2)\wedge (H6) $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.9 Remark 3
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ (H3)\wedge (H5) $ $ (K1) $ Theorem 3.10 Does not exist
$ (K2) $ Theorem 3.10 Does not exist
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ (H4) $ $ (K1) $ Theorem 3.11 Remark 5
$ (K2) $ Theorem 3.11 Remark 5
$ (K3) $ Theorem 3.11 Does not exist
$ (K4) $ $ \emptyset $ Does not exist
Here $(H0):=\overline{(H1)\vee (H2)\vee (H3)\vee (H4)}$,
$(K1):=\{b-1-bd\geq0, s-1-bd\geq0\}$, $(K2):=\{b-1-bd<0, s-1-bd\geq 0\}$,
$(K3):=\{b-1-bd\geq0,s-1-bd<0\}$ and $(K4):=\{b-1-bd<0, s-1-bd<0\}$
Condition $ 1 $ Condition $ 2 $ Global Results Hopf bifurcation
$ (H0) $ $ d<1 $ $ (K1) $ Theorem 3.3 Does not exist
$ (K2) $ Theorem 3.3 Does not exist
$ (K3) $ Theorem 3.3 Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ d>1 $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.4 Does not exist
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ Theorem 3.5 Does not exist
$ (H1) $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.6 Remark 1
$ (K3) $ Theorem 3.7 Does not exist
$ (K4) $ Theorem 3.8 Does not exist
$ (H2)\wedge (H6) $ $ (K1) $ $ \emptyset $ Does not exist
$ (K2) $ Theorem 3.9 Remark 3
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ (H3)\wedge (H5) $ $ (K1) $ Theorem 3.10 Does not exist
$ (K2) $ Theorem 3.10 Does not exist
$ (K3) $ $ \emptyset $ Does not exist
$ (K4) $ $ \emptyset $ Does not exist
$ (H4) $ $ (K1) $ Theorem 3.11 Remark 5
$ (K2) $ Theorem 3.11 Remark 5
$ (K3) $ Theorem 3.11 Does not exist
$ (K4) $ $ \emptyset $ Does not exist
Here $(H0):=\overline{(H1)\vee (H2)\vee (H3)\vee (H4)}$,
$(K1):=\{b-1-bd\geq0, s-1-bd\geq0\}$, $(K2):=\{b-1-bd<0, s-1-bd\geq 0\}$,
$(K3):=\{b-1-bd\geq0,s-1-bd<0\}$ and $(K4):=\{b-1-bd<0, s-1-bd<0\}$
[1]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[2]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[3]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[4]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[5]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[6]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[7]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[8]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[9]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[10]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[11]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[12]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[13]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[14]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[15]

Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135

[16]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[17]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[18]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[19]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[20]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (350)
  • HTML views (508)
  • Cited by (0)

Other articles
by authors

[Back to Top]