# American Institute of Mathematical Sciences

## Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response

 1 School of Mathematics and Systems Science, Beihang University, Beijing 100191, China 2 Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA

* Corresponding author: Shigui Ruan

Received  July 2019 Revised  October 2019 Published  February 2020

Fund Project: Research of the first author was supported by China Scholarship Council (201806020127) and the Academic Excellence Foundation of BUAA for Ph.D. Students. Research of the second author was supported by Beijing Natural Science Foundation (Z180005) and National Natural Science Foundation of China (11422111)

In this paper, we study the global dynamics of a density-dependent predator-prey system with ratio-dependent functional response. The main features and challenges are that the origin of this model is a degenerate equilibrium of higher order and there are multiple positive equilibria. Firstly, local qualitative behavior of the system around the origin is explicitly described. Then, based on the dynamics around the origin and other equilibria, global qualitative analysis of the model is carried out. Finally, the existence of Bogdanov-Takens bifurcation (cusp case) of codimension two is analyzed. This shows that the system undergoes various bifurcation phenomena, including saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation along with different topological sectors near the degenerate origin. Numerical simulations are presented to illustrate the theoretical results.

Citation: Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020041
##### References:

show all references

##### References:
Phase diagram of system (2.2) with $s = b = 2,\; d = 0.5$ and $r = 0.2$
Saddle-node $(0,0)$ of system (2.11) with $s = 2,d = 0.5,b = 1,r = 1$
Phase diagram of system (2.2) with $s = 2,d = 0.5,b = 1,r = 1$
Phase diagram of system (1.3) with $s = r = 2,d = 0.1,b = 1$
Phase diagram of system (1.3) with $s = 3,d = 1.5,b = 1,r = 1$
Phase diagram of system (1.3) with $b = s = 2,d = 1.5,r = 2$
Phase diagram of system (1.3) with $s = 2,d = 0.625,r = 1,b = 0.8$
Phase diagram of system (1.3) with $s = 1,d = 0.5,b = 2.5,r = 1$
Phase diagram of system (1.3) with $s = 0.8,d = 0.5,r = 1,b = 1$
Phase diagram of system (1.3) with $s = 1.75625,d = 0.2,r = 2,b = 3$
Phase diagram of system (1.3) with $s = 1.5,d = 0.1,r = 2,b = 2$
Bifurcation sets and the corresponding phase portraits of system (4.6)
(Ⅰ): When $u_1 = -0.1$ and $u_2 = 0.515$ lie in the region Ⅰ, there exists no positive equilibrium; (Ⅱ): When $u_1 = -0.1$ and $u_2 = 0.55$ lie in the region Ⅱ, there exist a saddle point and an unstable focus; (Ⅲ): When $u_1 = -0.1$ and $u_2 = 0.605$ lie in the region Ⅲ, there exist a saddle point, a stable focus and an unstable limit cycle; (Ⅳ): When $u_1 = -0.1$ and $u_2 = 0.8$ lie in the region Ⅳ, there exist a saddle point and an stable focus
The global dymamics of system (1.3)
 Condition $1$ Condition $2$ Global Results Hopf bifurcation $(H0)$ $d<1$ $(K1)$ Theorem 3.3 Does not exist $(K2)$ Theorem 3.3 Does not exist $(K3)$ Theorem 3.3 Does not exist $(K4)$ $\emptyset$ Does not exist $d>1$ $(K1)$ $\emptyset$ Does not exist $(K2)$ Theorem 3.4 Does not exist $(K3)$ $\emptyset$ Does not exist $(K4)$ Theorem 3.5 Does not exist $(H1)$ $(K1)$ $\emptyset$ Does not exist $(K2)$ Theorem 3.6 Remark 1 $(K3)$ Theorem 3.7 Does not exist $(K4)$ Theorem 3.8 Does not exist $(H2)\wedge (H6)$ $(K1)$ $\emptyset$ Does not exist $(K2)$ Theorem 3.9 Remark 3 $(K3)$ $\emptyset$ Does not exist $(K4)$ $\emptyset$ Does not exist $(H3)\wedge (H5)$ $(K1)$ Theorem 3.10 Does not exist $(K2)$ Theorem 3.10 Does not exist $(K3)$ $\emptyset$ Does not exist $(K4)$ $\emptyset$ Does not exist $(H4)$ $(K1)$ Theorem 3.11 Remark 5 $(K2)$ Theorem 3.11 Remark 5 $(K3)$ Theorem 3.11 Does not exist $(K4)$ $\emptyset$ Does not exist Here $(H0):=\overline{(H1)\vee (H2)\vee (H3)\vee (H4)}$, $(K1):=\{b-1-bd\geq0, s-1-bd\geq0\}$, $(K2):=\{b-1-bd<0, s-1-bd\geq 0\}$, $(K3):=\{b-1-bd\geq0,s-1-bd<0\}$ and $(K4):=\{b-1-bd<0, s-1-bd<0\}$
 Condition $1$ Condition $2$ Global Results Hopf bifurcation $(H0)$ $d<1$ $(K1)$ Theorem 3.3 Does not exist $(K2)$ Theorem 3.3 Does not exist $(K3)$ Theorem 3.3 Does not exist $(K4)$ $\emptyset$ Does not exist $d>1$ $(K1)$ $\emptyset$ Does not exist $(K2)$ Theorem 3.4 Does not exist $(K3)$ $\emptyset$ Does not exist $(K4)$ Theorem 3.5 Does not exist $(H1)$ $(K1)$ $\emptyset$ Does not exist $(K2)$ Theorem 3.6 Remark 1 $(K3)$ Theorem 3.7 Does not exist $(K4)$ Theorem 3.8 Does not exist $(H2)\wedge (H6)$ $(K1)$ $\emptyset$ Does not exist $(K2)$ Theorem 3.9 Remark 3 $(K3)$ $\emptyset$ Does not exist $(K4)$ $\emptyset$ Does not exist $(H3)\wedge (H5)$ $(K1)$ Theorem 3.10 Does not exist $(K2)$ Theorem 3.10 Does not exist $(K3)$ $\emptyset$ Does not exist $(K4)$ $\emptyset$ Does not exist $(H4)$ $(K1)$ Theorem 3.11 Remark 5 $(K2)$ Theorem 3.11 Remark 5 $(K3)$ Theorem 3.11 Does not exist $(K4)$ $\emptyset$ Does not exist Here $(H0):=\overline{(H1)\vee (H2)\vee (H3)\vee (H4)}$, $(K1):=\{b-1-bd\geq0, s-1-bd\geq0\}$, $(K2):=\{b-1-bd<0, s-1-bd\geq 0\}$, $(K3):=\{b-1-bd\geq0,s-1-bd<0\}$ and $(K4):=\{b-1-bd<0, s-1-bd<0\}$
 [1] Xinyu Song, Liming Cai, U. Neumann. Ratio-dependent predator-prey system with stage structure for prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 747-758. doi: 10.3934/dcdsb.2004.4.747 [2] Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130 [3] Benjamin Leard, Catherine Lewis, Jorge Rebaza. Dynamics of ratio-dependent Predator-Prey models with nonconstant harvesting. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 303-315. doi: 10.3934/dcdss.2008.1.303 [4] Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283 [5] Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041 [6] Inkyung Ahn, Wonlyul Ko, Kimun Ryu. Asymptotic behavior of a ratio-dependent predator-prey system with disease in the prey. Conference Publications, 2013, 2013 (special) : 11-19. doi: 10.3934/proc.2013.2013.11 [7] Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321 [8] Zhicheng Wang, Jun Wu. Existence of positive periodic solutions for delayed ratio-dependent predator-prey system with stocking. Communications on Pure & Applied Analysis, 2006, 5 (3) : 423-433. doi: 10.3934/cpaa.2006.5.423 [9] Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719 [10] Haiyin Li, Yasuhiro Takeuchi. Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1117-1134. doi: 10.3934/dcdsb.2015.20.1117 [11] Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020033 [12] Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang. Positive steady states of a density-dependent predator-prey model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3087-3107. doi: 10.3934/dcdsb.2017209 [13] Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062 [14] Hebai Chen, Xingwu Chen. Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ). Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4141-4170. doi: 10.3934/dcdsb.2018130 [15] Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267 [16] Jian Zu, Miaolei Li, Yuexi Gu, Shuting Fu. Modelling the evolutionary dynamics of host resistance-related traits in a susceptible-infected community with density-dependent mortality. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3049-3086. doi: 10.3934/dcdsb.2020051 [17] J. X. Velasco-Hernández, M. Núñez-López, G. Ramírez-Santiago, M. Hernández-Rosales. On carrying-capacity construction, metapopulations and density-dependent mortality. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1099-1110. doi: 10.3934/dcdsb.2017054 [18] Hanwu Liu, Lin Wang, Fengqin Zhang, Qiuying Li, Huakun Zhou. Dynamics of a predator-prey model with state-dependent carrying capacity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4739-4753. doi: 10.3934/dcdsb.2019028 [19] Meng Fan, Qian Wang. Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 563-574. doi: 10.3934/dcdsb.2004.4.563 [20] Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables