• Previous Article
    Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks
  • DCDS-B Home
  • This Issue
  • Next Article
    Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line
doi: 10.3934/dcdsb.2020042

Spatial pattern formation in activator-inhibitor models with nonlocal dispersal

1. 

Department of Mathematics, Harbin Institute of Technology, Weihai, Shandong 264209, China

2. 

Department of Mathematics, William & Mary, Williamsburg, Virginia, 23187-8795, USA

3. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author: Shanshan Chen

Received  July 2019 Revised  October 2019 Published  February 2020

Fund Project: S. Chen is supported by National Natural Science Foundation of China (No 11771109), and J. Shi is supported by US-NSF grants DMS-1715651 and DMS-1853598, G. Zhang is supported by National Natural Science Foundation of China (No 11701472)

The stability of a constant steady state in a general reaction-diffusion activator-inhibitor model with nonlocal dispersal of the activator or inhibitor is considered. It is shown that Turing type instability and associated spatial patterns can be induced by fast nonlocal inhibitor dispersal and slow activator diffusion, and slow nonlocal activator dispersal also causes instability but may not produce stable spatial patterns. The existence of nonconstant positive steady states is shown through bifurcation theory. This suggests a new mechanism for spatial pattern formation, which has different instability parameter regime compared to Turing mechanism. The theoretical results are applied to pattern formation problems in nonlocal Klausmeier-Gray-Scott water-plant model and Holling-Tanner predator-prey model.

Citation: Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020042
References:
[1]

M. AlfaroH. Izuhara and M. Mimura, On a nonlocal system for vegetation in drylands, J. Math. Biol., 77 (2018), 1761-1793.  doi: 10.1007/s00285-018-1215-0.  Google Scholar

[2]

E. J. AllenL. J. S. Allen and X. Gilliam, Dispersal and competition models for plants, J. Math. Biol., 34 (1996), 455-481.  doi: 10.1007/BF00167944.  Google Scholar

[3]

L. J. S. AllenE. J. Allen and S. Ponweera, A mathematical model for weed dispersal and control, Bull. Math. Biol., 58 (1996), 815-834.  doi: 10.1007/BF02459485.  Google Scholar

[4]

X. L. Bai and F. Li, Global dynamics of a competition model with nonlocal dispersal Ⅱ: The full system, J. Differential Equations, 258 (2015), 2655-2685.  doi: 10.1016/j.jde.2014.12.014.  Google Scholar

[5]

X.-L. Bai and F. Li, Classification of global dynamics of competition models with nonlocal dispersals Ⅰ: symmetric kernels, Calc. Var. Partial Differential Equations, 57 (2018), 35pp. doi: 10.1007/s00526-018-1419-6.  Google Scholar

[6]

K. J. Brown and F. A. Davidson, Global bifurcation in the Brusselator system, Nonlinear Anal., 24 (1995), 1713-1725.  doi: 10.1016/0362-546X(94)00218-7.  Google Scholar

[7]

W. Chen and M. J. Ward, The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model, SIAM J. Appl. Dyn. Syst., 10 (2011), 582-666.  doi: 10.1137/09077357X.  Google Scholar

[8]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[9]

J. CovilleJ. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709.  doi: 10.1137/060676854.  Google Scholar

[10]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[11]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.  doi: 10.1007/BF00282325.  Google Scholar

[12]

L. Eigentler and J. A. Sherratt, Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal, J. Math. Biol., 77 (2018), 739-763.  doi: 10.1007/s00285-018-1233-y.  Google Scholar

[13]

J. García-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations, 246 (2009), 21-38.  doi: 10.1016/j.jde.2008.04.015.  Google Scholar

[14]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.  Google Scholar

[15]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[16]

J. JangW.-M. Ni and M.-X. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dynam. Differential Equations, 16 (2004), 297-320.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[17]

J.-Y. JinJ.-P. ShiJ.-J. Wei and F.-Q. Yi, Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of CIMA chemical reactions, Rocky Mountain J. Math., 43 (2013), 1637-1674.  doi: 10.1216/RMJ-2013-43-5-1637.  Google Scholar

[18]

B. J. Kealy and D. J. Wollkind, A nonlinear stability analysis of vegetative Turing pattern formation for an interaction-diffusion plant-surface water model system in an arid flat environment, Bull. Math. Biol., 74 (2012), 803-833.  doi: 10.1007/s11538-011-9688-7.  Google Scholar

[19]

C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828.  doi: 10.1126/science.284.5421.1826.  Google Scholar

[20]

T. KolokolnikovM. J. Ward and J.-C. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The low feed-rate regime, Stud. Appl. Math., 115 (2005), 21-71.  doi: 10.1111/j.1467-9590.2005.01554.  Google Scholar

[21]

T. KolokolnikovM. J. Ward and J.-C. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The pulse-splitting regime, Phys. D, 202 (2005), 258-293.  doi: 10.1016/j.physd.2005.02.009.  Google Scholar

[22]

S. Kondo and R. Asai, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376 (1995), 765-768.  doi: 10.1038/376765a0.  Google Scholar

[23]

S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.  doi: 10.1126/science.1179047.  Google Scholar

[24]

M. KotM. A. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms, Ecology, 77 (1996), 2017-2042.  doi: 10.2307/2265698.  Google Scholar

[25]

I. Lengyel and I. R. Epstein, Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system, Science, 251 (1991), 650-652.  doi: 10.1126/science.251.4994.650.  Google Scholar

[26]

F. LiY. Lou and Y. Wang, Global dynamics of a competition model with non-local dispersal Ⅰ: The shadow system, J. Math. Anal. Appl., 412 (2014), 485-497.  doi: 10.1016/j.jmaa.2013.10.071.  Google Scholar

[27]

S.-B. LiJ.-H. Wu and Y.-Y. Dong, Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations, 259 (2015), 1990-2029.  doi: 10.1016/j.jde.2015.03.017.  Google Scholar

[28]

X. LiW.-H. Jiang and J.-P. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78 (2013), 287-306.  doi: 10.1093/imamat/hxr050.  Google Scholar

[29]

Y. LiA. Marciniak-CzochraI. Takagi and B.-Y. Wu, Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis, Hiroshima Math. J., 47 (2017), 217-247.  doi: 10.32917/hmj/1499392826.  Google Scholar

[30]

F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.  doi: 10.1137/050636152.  Google Scholar

[31]

A. Marciniak-CzochraS. H$\ddot{a}$rtingG. Karch and K. Suzuki, Dynamical spike solutions in a nonlocal model of pattern formation, Nonlinearity, 31 (2018), 1757-1781.  doi: 10.1088/1361-6544/aaa5dc.  Google Scholar

[32]

A. Marciniak-CzochraG. Karch and K. Suzuki, Unstable patterns in reaction-diffusion model of early carcinogenesis, J. Math. Pures. Appl., 99 (2013), 509-543.  doi: 10.1016/j.matpur.2012.09.011.  Google Scholar

[33]

A. Marciniak-CzochraG. Karch and K. Suzuki, Instability of Turing patterns in reaction-diffusion-ODE systems, J. Math. Biol., 74 (2017), 583-618.  doi: 10.1007/s00285-016-1035-z.  Google Scholar

[34]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222.  doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[35]

W.-M. Ni and M.-X. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction, Trans. Amer. Math. Soc., 357 (2005), 3953-3969.  doi: 10.1090/S0002-9947-05-04010-9.  Google Scholar

[36]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[37]

J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189-192.  doi: 10.1126/science.261.5118.189.  Google Scholar

[38]

R. PengF.-Q. Yi and X.-Q. Zhao, Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations, 254 (2013), 2465-2498.  doi: 10.1016/j.jde.2012.12.009.  Google Scholar

[39]

J. A. Powell and N. E. Zimmermann, Multiscale analysis of active seed dispersal contributes to resolving Reid's paradox, Ecology, 85 (2004), 490-506.  doi: 10.1890/02-0535.  Google Scholar

[40]

M. RietkerkM. C. BoerlijstF. van LangeveldeR. HilleRisLambers and et al., Self-organization of vegetation in arid ecosystems, Amer. Naturalist, 160 (2002), 524-530.  doi: 10.1086/342078.  Google Scholar

[41]

M. RietkerkS. C. DekkerP. C. De Ruiter and J. van de Koppel, Self-organized patchiness and catastrophic shifts in ecosystems., Science, 305 (2004), 1926-1929.  doi: 10.1126/science.1101867.  Google Scholar

[42]

L. A. Segel and J. L. Jackson, Dissipative structure: An explanation and an ecological example, J. Theor. Biol., 37 (1972), 545-559.  doi: 10.1016/0022-5193(72)90090-2.  Google Scholar

[43]

L. Sewalt and A. Doelman, Spatially periodic multipulse patterns in a generalized Klausmeier-Gray-Scott model, SIAM J. Appl. Dyn. Syst., 16 (2017), 1113-1163.  doi: 10.1137/16M1078756.  Google Scholar

[44]

W.-X. Shen and X.-X. Xie, On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications, Discrete Contin. Dyn. Syst., 35 (2015), 1665-1696.  doi: 10.3934/dcds.2015.35.1665.  Google Scholar

[45]

R. Sheth, L. Marcon, M. F. Bastida and M. Junco, et al., Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism, Science, 338 (2012), 1476-1480. doi: 10.1126/science.1226804.  Google Scholar

[46]

S. SickS. ReinkerJ. Timmer and T. Schlake, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science, 314 (2006), 1447-1450.  doi: 10.1126/science.1130088.  Google Scholar

[47]

J.-W. SunW.-T. Li and Z.-C. Wang, The periodic principal eigenvalues with applications to the nonlocal dispersal logistic equation, J. Differential Equations, 263 (2017), 934-971.  doi: 10.1016/j.jde.2017.03.001.  Google Scholar

[48]

J.-W. SunW.-T. Li and F.-Y. Yang, Blow-up profiles for positive solutions of nonlocal dispersal equation, Appl. Math. Lett., 42 (2015), 59-63.  doi: 10.1016/j.aml.2014.11.009.  Google Scholar

[49]

J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56 (1975), 855-867.  doi: 10.2307/1936296.  Google Scholar

[50]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[51]

S. van der SteltA. DoelmanG. Hek and J. D. M. Rademacher, Rise and fall of periodic patterns for a generalized Klausmeier-Gray-Scott model, J. Nonlinear Sci., 23 (2013), 39-95.  doi: 10.1007/s00332-012-9139-0.  Google Scholar

[52]

J.-F. Wang, Spatiotemporal patterns of a homogeneous diffusive predator-prey system with Holling type Ⅲ functional response, J. Dynam. Differential Equations, 29 (2017), 1383-1409.  doi: 10.1007/s10884-016-9517-7.  Google Scholar

[53]

J.-F. WangJ.-P. Shi and J.-J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differential Equations, 251 (2011), 1276-1304.  doi: 10.1016/j.jde.2011.03.004.  Google Scholar

[54]

F.-Q. YiJ.-J. Wei and J.-P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

show all references

References:
[1]

M. AlfaroH. Izuhara and M. Mimura, On a nonlocal system for vegetation in drylands, J. Math. Biol., 77 (2018), 1761-1793.  doi: 10.1007/s00285-018-1215-0.  Google Scholar

[2]

E. J. AllenL. J. S. Allen and X. Gilliam, Dispersal and competition models for plants, J. Math. Biol., 34 (1996), 455-481.  doi: 10.1007/BF00167944.  Google Scholar

[3]

L. J. S. AllenE. J. Allen and S. Ponweera, A mathematical model for weed dispersal and control, Bull. Math. Biol., 58 (1996), 815-834.  doi: 10.1007/BF02459485.  Google Scholar

[4]

X. L. Bai and F. Li, Global dynamics of a competition model with nonlocal dispersal Ⅱ: The full system, J. Differential Equations, 258 (2015), 2655-2685.  doi: 10.1016/j.jde.2014.12.014.  Google Scholar

[5]

X.-L. Bai and F. Li, Classification of global dynamics of competition models with nonlocal dispersals Ⅰ: symmetric kernels, Calc. Var. Partial Differential Equations, 57 (2018), 35pp. doi: 10.1007/s00526-018-1419-6.  Google Scholar

[6]

K. J. Brown and F. A. Davidson, Global bifurcation in the Brusselator system, Nonlinear Anal., 24 (1995), 1713-1725.  doi: 10.1016/0362-546X(94)00218-7.  Google Scholar

[7]

W. Chen and M. J. Ward, The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model, SIAM J. Appl. Dyn. Syst., 10 (2011), 582-666.  doi: 10.1137/09077357X.  Google Scholar

[8]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[9]

J. CovilleJ. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709.  doi: 10.1137/060676854.  Google Scholar

[10]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[11]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.  doi: 10.1007/BF00282325.  Google Scholar

[12]

L. Eigentler and J. A. Sherratt, Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal, J. Math. Biol., 77 (2018), 739-763.  doi: 10.1007/s00285-018-1233-y.  Google Scholar

[13]

J. García-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations, 246 (2009), 21-38.  doi: 10.1016/j.jde.2008.04.015.  Google Scholar

[14]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.  Google Scholar

[15]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[16]

J. JangW.-M. Ni and M.-X. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dynam. Differential Equations, 16 (2004), 297-320.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[17]

J.-Y. JinJ.-P. ShiJ.-J. Wei and F.-Q. Yi, Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of CIMA chemical reactions, Rocky Mountain J. Math., 43 (2013), 1637-1674.  doi: 10.1216/RMJ-2013-43-5-1637.  Google Scholar

[18]

B. J. Kealy and D. J. Wollkind, A nonlinear stability analysis of vegetative Turing pattern formation for an interaction-diffusion plant-surface water model system in an arid flat environment, Bull. Math. Biol., 74 (2012), 803-833.  doi: 10.1007/s11538-011-9688-7.  Google Scholar

[19]

C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828.  doi: 10.1126/science.284.5421.1826.  Google Scholar

[20]

T. KolokolnikovM. J. Ward and J.-C. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The low feed-rate regime, Stud. Appl. Math., 115 (2005), 21-71.  doi: 10.1111/j.1467-9590.2005.01554.  Google Scholar

[21]

T. KolokolnikovM. J. Ward and J.-C. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The pulse-splitting regime, Phys. D, 202 (2005), 258-293.  doi: 10.1016/j.physd.2005.02.009.  Google Scholar

[22]

S. Kondo and R. Asai, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376 (1995), 765-768.  doi: 10.1038/376765a0.  Google Scholar

[23]

S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.  doi: 10.1126/science.1179047.  Google Scholar

[24]

M. KotM. A. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms, Ecology, 77 (1996), 2017-2042.  doi: 10.2307/2265698.  Google Scholar

[25]

I. Lengyel and I. R. Epstein, Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system, Science, 251 (1991), 650-652.  doi: 10.1126/science.251.4994.650.  Google Scholar

[26]

F. LiY. Lou and Y. Wang, Global dynamics of a competition model with non-local dispersal Ⅰ: The shadow system, J. Math. Anal. Appl., 412 (2014), 485-497.  doi: 10.1016/j.jmaa.2013.10.071.  Google Scholar

[27]

S.-B. LiJ.-H. Wu and Y.-Y. Dong, Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations, 259 (2015), 1990-2029.  doi: 10.1016/j.jde.2015.03.017.  Google Scholar

[28]

X. LiW.-H. Jiang and J.-P. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78 (2013), 287-306.  doi: 10.1093/imamat/hxr050.  Google Scholar

[29]

Y. LiA. Marciniak-CzochraI. Takagi and B.-Y. Wu, Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis, Hiroshima Math. J., 47 (2017), 217-247.  doi: 10.32917/hmj/1499392826.  Google Scholar

[30]

F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.  doi: 10.1137/050636152.  Google Scholar

[31]

A. Marciniak-CzochraS. H$\ddot{a}$rtingG. Karch and K. Suzuki, Dynamical spike solutions in a nonlocal model of pattern formation, Nonlinearity, 31 (2018), 1757-1781.  doi: 10.1088/1361-6544/aaa5dc.  Google Scholar

[32]

A. Marciniak-CzochraG. Karch and K. Suzuki, Unstable patterns in reaction-diffusion model of early carcinogenesis, J. Math. Pures. Appl., 99 (2013), 509-543.  doi: 10.1016/j.matpur.2012.09.011.  Google Scholar

[33]

A. Marciniak-CzochraG. Karch and K. Suzuki, Instability of Turing patterns in reaction-diffusion-ODE systems, J. Math. Biol., 74 (2017), 583-618.  doi: 10.1007/s00285-016-1035-z.  Google Scholar

[34]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222.  doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[35]

W.-M. Ni and M.-X. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction, Trans. Amer. Math. Soc., 357 (2005), 3953-3969.  doi: 10.1090/S0002-9947-05-04010-9.  Google Scholar

[36]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[37]

J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189-192.  doi: 10.1126/science.261.5118.189.  Google Scholar

[38]

R. PengF.-Q. Yi and X.-Q. Zhao, Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations, 254 (2013), 2465-2498.  doi: 10.1016/j.jde.2012.12.009.  Google Scholar

[39]

J. A. Powell and N. E. Zimmermann, Multiscale analysis of active seed dispersal contributes to resolving Reid's paradox, Ecology, 85 (2004), 490-506.  doi: 10.1890/02-0535.  Google Scholar

[40]

M. RietkerkM. C. BoerlijstF. van LangeveldeR. HilleRisLambers and et al., Self-organization of vegetation in arid ecosystems, Amer. Naturalist, 160 (2002), 524-530.  doi: 10.1086/342078.  Google Scholar

[41]

M. RietkerkS. C. DekkerP. C. De Ruiter and J. van de Koppel, Self-organized patchiness and catastrophic shifts in ecosystems., Science, 305 (2004), 1926-1929.  doi: 10.1126/science.1101867.  Google Scholar

[42]

L. A. Segel and J. L. Jackson, Dissipative structure: An explanation and an ecological example, J. Theor. Biol., 37 (1972), 545-559.  doi: 10.1016/0022-5193(72)90090-2.  Google Scholar

[43]

L. Sewalt and A. Doelman, Spatially periodic multipulse patterns in a generalized Klausmeier-Gray-Scott model, SIAM J. Appl. Dyn. Syst., 16 (2017), 1113-1163.  doi: 10.1137/16M1078756.  Google Scholar

[44]

W.-X. Shen and X.-X. Xie, On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications, Discrete Contin. Dyn. Syst., 35 (2015), 1665-1696.  doi: 10.3934/dcds.2015.35.1665.  Google Scholar

[45]

R. Sheth, L. Marcon, M. F. Bastida and M. Junco, et al., Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism, Science, 338 (2012), 1476-1480. doi: 10.1126/science.1226804.  Google Scholar

[46]

S. SickS. ReinkerJ. Timmer and T. Schlake, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science, 314 (2006), 1447-1450.  doi: 10.1126/science.1130088.  Google Scholar

[47]

J.-W. SunW.-T. Li and Z.-C. Wang, The periodic principal eigenvalues with applications to the nonlocal dispersal logistic equation, J. Differential Equations, 263 (2017), 934-971.  doi: 10.1016/j.jde.2017.03.001.  Google Scholar

[48]

J.-W. SunW.-T. Li and F.-Y. Yang, Blow-up profiles for positive solutions of nonlocal dispersal equation, Appl. Math. Lett., 42 (2015), 59-63.  doi: 10.1016/j.aml.2014.11.009.  Google Scholar

[49]

J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56 (1975), 855-867.  doi: 10.2307/1936296.  Google Scholar

[50]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[51]

S. van der SteltA. DoelmanG. Hek and J. D. M. Rademacher, Rise and fall of periodic patterns for a generalized Klausmeier-Gray-Scott model, J. Nonlinear Sci., 23 (2013), 39-95.  doi: 10.1007/s00332-012-9139-0.  Google Scholar

[52]

J.-F. Wang, Spatiotemporal patterns of a homogeneous diffusive predator-prey system with Holling type Ⅲ functional response, J. Dynam. Differential Equations, 29 (2017), 1383-1409.  doi: 10.1007/s10884-016-9517-7.  Google Scholar

[53]

J.-F. WangJ.-P. Shi and J.-J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differential Equations, 251 (2011), 1276-1304.  doi: 10.1016/j.jde.2011.03.004.  Google Scholar

[54]

F.-Q. YiJ.-J. Wei and J.-P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

Figure 1.  Diagram for parameters regions $ R_1 $ and $ R_2 $. Here only nonlocal model (3) could exhibit complex patterns in region (Ⅰ), only reaction-diffusion model (4) could exhibit complex patterns in region (Ⅱ), and both model (3) and (4) could exhibit complex patterns in region (Ⅲ)
Figure 2.  The solution of model (50) converges to the constant positive equilibrium $ (u_1,v_1) $ for $ c>b $. Here $ d = 6 $, $ A = 4 $, $ b = 1.8 $, $ L = 1 $, $ c = 10 $, and the initial values $ u(x,0) = 1.5+0.001x(1-x) $, and $ v(x,0) = 1.1+0.001\cos x $. (Left) $ u(x,t) $; (Right) $ v(x,t) $
Figure 3.  The solution of model (50) forms a one-spike spatial pattern for $ c<b $, and the upper panels show the profile of $ u $ and $ v $ at time $ t = 12 $ and $ t = 30 $, respectively. Here $ d = 6 $, $ A = 4 $, $ b = 1.8 $, $ L = 1 $, $ c = 1 $, and the initial values $ u(x,0) = 1.5+0.001x(1-x) $, and $ v(x,0) = 1.1+0.001\cos x $. (Left) $ u(x,t) $; (Right) $ v(x,t) $
Figure 4.  The solution of model (50) forms to a two-spike spatial pattern for $ c<b $, and the upper panels show the profile of $ u $ and $ v $ at time $ t = 13 $ and $ t = 30 $, respectively. Here $ d = 6 $, $ A = 4 $, $ b = 1.8 $, $ L = 2 $, $ c = 1 $, and the initial values $ u(x,0) = 1.5+0.001x(2-x) $, and $ v(x,0) = 1.1+0.001\cos x $. (Left) $ u(x,t) $; (Right) $ v(x,t) $
Figure 5.  The solution of model (54) converges to the constant steady state (respectively, a nonconstant stationary pattern) for $ c<c_0 $ (respectively, $ c>c_0 $), and the lower panel show the profile of the nonconstant stationary pattern with $ c = 4 $. Here $ \beta = 0.2 $, $ m = 2 $, $ L = \pi $, $ s = 1 $, $ d = 0.03 $, and the initial values $ u(x,0) = 0.5+0.05\cos x $, and $ v(x,0) = 0.3+0.02\cos x $. (Upper) $ c = 2 $; (Middle) $ c = 4 $; (Left) $ u(x,t) $; (Right) $ v(x,t) $
Figure 6.  The solution converges to a nonconstant stationary pattern for the nonlocal model (54), whereas the solution converges to the constant steady state for the reaction-diffusion model (59). Here the initial values $ u(x,0) = 0.3+0.05\cos x/2 $, and $ v(x,0) = 0.5+0.03\cos x/2 $, $ \beta = 0.2 $, $ m = 2 $, $ L = 2\pi $, $ s = 1 $, $ d = 0.15 $, $ c = 4 $, and $ (c,d)\in R_2\backslash R_1 $, where $ R_1 $ and $ R_2 $ are defined as in Eqs. (44) and (39), respectively. (Left) $ u(x,t) $; (Right) $ v(x,t) $
[1]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[2]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[3]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[8]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[14]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[15]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[16]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[17]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[18]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[19]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[20]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (255)
  • HTML views (444)
  • Cited by (0)

Other articles
by authors

[Back to Top]