[1]
|
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084.
|
[2]
|
D. D. Ba${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$nov and E. Minchev, Nonexistence of global solutions of the initial-boundary value problem for the nonlinear Klein-Gordon equation, J. Math. Phys., 36 (1995), 756-762.
doi: 10.1063/1.531154.
|
[3]
|
W. Bao and Y. Cai, Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator, SIAM J. Numer. Anal., 50 (2012), 492-521.
doi: 10.1137/110830800.
|
[4]
|
W. Bao and Y. Cai, Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrödinger equation with wave operator, SIAM J. Numer. Anal., 52 (2014), 1103-1127.
doi: 10.1137/120866890.
|
[5]
|
W. Bao, Y. Cai and X. Zhao, A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime, SIAM J. Numer. Anal., 52 (2014), 2488-2511.
doi: 10.1137/130950665.
|
[6]
|
W. Bao and X. Dong, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime, Numer. Math., 120 (2012), 189-229.
doi: 10.1007/s00211-011-0411-2.
|
[7]
|
W. Bao, X. Dong and X. Zhao, Uniformly accurate multiscale time integrators for highly oscillatory second order differential equations, J. Math. Study, 47 (2014), 111-150.
doi: 10.4208/jms.v47n2.14.01.
|
[8]
|
W. Bao and X. Zhao, A uniformly accurate (UA) multiscale time integrator Fourier pseoduspectral method for the Klein-Gordon-Schrödinger equations in the nonrelativistic limit regime, Numer. Math., 135 (2017), 833-873.
doi: 10.1007/s00211-016-0818-x.
|
[9]
|
W. Bao and X. Zhao, A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon-Zakharov system in the high-plasma-frequency limit regime, J. Comput. Phys., 327 (2016), 270-293.
doi: 10.1016/j.jcp.2016.09.046.
|
[10]
|
W. Bao and X. Zhao, A uniform second-order in time multiscale time integrator for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime, preprint, 2019.
|
[11]
|
C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations Ⅰ: Formal derivations, J. Statist. Phys., 63 (1991), 323-344.
doi: 10.1007/BF01026608.
|
[12]
|
C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations Ⅱ: Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math., 46 (1993), 667-753.
doi: 10.1002/cpa.3160460503.
|
[13]
|
S. Baumstark, E. Faou and K. Schratz, Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting, Math. Comp., 87 (2018), 1227-1254.
doi: 10.1090/mcom/3263.
|
[14]
|
M. Bennoune, M. Lemou and L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys., 227 (2008), 3781-3803.
doi: 10.1016/j.jcp.2007.11.032.
|
[15]
|
F. Castella, P. Chartier, F. Méhats and A. Murua, Stroboscopic averaging for the nonlinear Schrödinger equation, Found. Comput. Math., 15 (2015), 519-559.
doi: 10.1007/s10208-014-9235-7.
|
[16]
|
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge University Press, London, 1970.
|
[17]
|
P. Chartier, A. Murua and J. M. Sanz-Serna, A formal series approach to averaging: Exponentially small error estimates, Discrete Contin. Dyn. Syst., 32 (2012), 3009-3027.
doi: 10.3934/dcds.2012.32.3009.
|
[18]
|
P. Chartier, N. Crouseilles, M. Lemou and F. Méhats, Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations, Numer. Math., 129 (2015), 211-250.
doi: 10.1007/s00211-014-0638-9.
|
[19]
|
P. Chartier, M. Lemou, F. Méhats and G. Vilmart, A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations, preprint, arXiv: 1712.06371.
|
[20]
|
D. Cohen, E. Hairer and C. Lubich, Modulated Fourier expansions of highly oscillatory differential equations, Found. Comput. Math., 3 (2003), 327-345.
doi: 10.1007/s10208-002-0062-x.
|
[21]
|
A. Crestetto, N. Crouseilles and M. Lemou, Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equations using particles, Kinet. Relat. Models., 5 (2012), 787-816.
doi: 10.3934/krm.2012.5.787.
|
[22]
|
N. Crouseilles, M. Lemou and F. Méhats, Asymptotic preserving schemes for highly oscillatory Vlasov-Poisson equations, J. Comput. Phys., 248 (2013), 287-308.
doi: 10.1016/j.jcp.2013.04.022.
|
[23]
|
A. S. Davydov, Quantum Mechanics, International Series in Natural Philosophy, 1, Pergamon
Press, Oxford-New York-Toronto, Ont., 1976.
doi: 10.1016/C2013-0-05735-0.
|
[24]
|
P. Degond, M. Lemou and M. Picasso, Viscoelastic fluid models derived from kinetic equations for polymers, SIAM J. Appl. Math., 62 (2002), 1501-1519.
doi: 10.1137/S0036139900374404.
|
[25]
|
X. Dong, Z. Xu and X. Zhao, On time-splitting pseudospectral discretization for nonlinear Klein-Gordon equation in nonrelativistic limit regime, Commun. Comput. Phys., 16 (2014), 440-466.
doi: 10.4208/cicp.280813.190214a.
|
[26]
|
R. S. Ellis, Chapman-Enskog-Hilbert expansion for a Markovian model of the Boltzmann equation, Comm. Pure Appl. Math., 26 (1973), 327-359.
doi: 10.1002/cpa.3160260304.
|
[27]
|
E. Faou, L. Gauckler and C. Lubich, Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus, Comm. Partial Differential Equations, 38 (2013), 1123-1140.
doi: 10.1080/03605302.2013.785562.
|
[28]
|
E. Faou and K. Schratz, Asympotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime, Numer. Math., 126 (2014), 441-469.
doi: 10.1007/s00211-013-0567-z.
|
[29]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-30666-8.
|
[30]
|
M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), 209-286.
doi: 10.1017/S0962492910000048.
|
[31]
|
K. Huang, C. Xiong and X. Zhao, Scalar-field theory of dark matter, Inter. J. Modern Physics A, 29 (2014).
doi: 10.1142/S0217751X14500742.
|
[32]
|
C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp., 77 (2008), 2141-2153.
doi: 10.1090/S0025-5718-08-02101-7.
|
[33]
|
S. Machihara, K. Nakanishi and T. Ozawa, Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Math. Ann., 322 (2002), 603-621.
doi: 10.1007/s002080200008.
|
[34]
|
N. Masmoudi and K. Nakanishi, From nonlinear Klein-Gordon equation to a system of coupled nonlinear Schrödinger equations, Math. Ann., 324 (2002), 359-389.
doi: 10.1007/s00208-002-0342-4.
|
[35]
|
A. Murua and J. M. Sanz-Serna, Word series for dynamical systems and their numerical integrators, Found. Comput. Math., 17 (2017), 675-712.
doi: 10.1007/s10208-015-9295-3.
|
[36]
|
B. Najman, The nonrelativistic limit of the nonlinear Klein-Gordon equation, Nonlinear Anal., 15 (1990), 217-228.
doi: 10.1016/0362-546X(90)90158-D.
|
[37]
|
A. Ostermannm and K. Schratz, Low regularity exponential-type integrators for semilinear Schrödinger equations, Found. Comput. Math., 18 (2018), 731-755.
doi: 10.1007/s10208-017-9352-1.
|
[38]
|
S. Pasquali, Dynamics of the nonlinear Klein-Gordon equation in the nonrelativistic limit,
Ann. Mat. Pura Appl. (4), 198 (2019), 903–972.
doi: 10.1007/s10231-018-0805-1.
|
[39]
|
C. Xiong, M. R. R. Good, Y. Guo, X. Liu and K. Huang, Relativistic superfluidity and vorticity from the nonlinear Klein-Gordon equation, Phys. Rev. D, 90 (2014).
doi: 10.1103/PhysRevD.90.125019.
|
[40]
|
X. Zhao, A combination of multiscale time integrator and two-scale formulation for the nonlinear Schrödinger equation with wave operator, J. Comput. Appl. Math., 326 (2017), 320-336.
doi: 10.1016/j.cam.2017.06.006.
|