Article Contents
Article Contents

# Pattern formation in a predator-mediated coexistence model with prey-taxis

• Can foraging by predators or a repulsive prey defense mechanism upset predator-mediated coexistence? This paper investigates one scenario involving a prey-taxis by a prey species. We study a system of three populations involving two competing species with a common predator. All three populations are mobile via random dispersal within a bounded spatial domain $\Omega$, but the predator's movement is influenced by one prey's gradient representing a repulsive effect on the predator. We prove existence of positive solutions, and investigate pattern formation through bifurcation analysis and numerical simulation.

Mathematics Subject Classification: 35K59, 35Q92, 92D25.

 Citation:

• Figure 1.  A plot of $\chi$ versus $k^{2}$. The red line is $\chi_{c}$ as a function of $k^{2}$. The blue dashed line shows $a(k^{2})b(k^{2}, \chi)-c(k^{2}, \chi) = 0$. Values of ($k^{2}, \chi$) above (below) the blue dashed line correspond to $a(k^{2})b(k^{2}, \chi)-c(k^{2}, \chi)$ positive (negative). This is an example where we use the parameter set: $(a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, d) = (0.70, 0.70, 0.10, 0.30, 1.39, 0.30, 0.70, 0.25)$ Hence, $a_{1}b_{2}-rb_{1} = 0.07$, so $k_{min}^{2} = 0.26$

Figure 2.  A plot of $\chi_{c_{1}}$ and $\chi_{c_{2}}$ versus $k^{2}$. $\chi_{c_{1}}$ (red line) and $\chi_{c_{2}}$ (blue dashed line) as functions of $k^{2}$ are plotted for the parameter set: $(a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu) = (0.10, 0.20, 0.10, 1.50, 3.0, 0.6, 0.1)$

Figure 3.  Case 1: $u$ "wins": In this example the parameters are chosen so that in the pure competition system $u$ "wins". Note that while parameters are such that in the absence of a repulsive prey defense mechanism by $u$, a predator mediated coexistence is expected; yet, once this state is disrupted $v$ is driven to extinction in the presence of this taxis mechanism. Parameter set for this figure is: $(a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, \chi, d) = (0.25, 0.75, 0.75, 0.25, 0.6875, 0.5, 0.25, 15, 0.5)$

Figure 4.  Case 2: $v$ "wins": In this example the parameters are chosen so that in the pure competition system $v$ "wins". Note that while parameters are such that in the absence of a repulsive prey defense mechanism by $u$, a predator mediated coexistence is expected; yet, once this state is disrupted, the prey coexist with peak densities out of phase with the predator in the presence of this taxis mechanism. Parameter set for this figure is: $(a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, \chi, d) = (1.1, 0.1, 1.4, 0.3, 0.4, 0.4, 0.2, 50, 0.25)$

Figure 5.  Spatio-temporal patterns: $v$ "wins" case. The first column shows the initial dynamics from the perturbation of the homogeneous steady state and the second column shows the spatio-temporal pattern that is achieved. In the last row $u(x, t)$, $v(x, t)$, and $w(x, t)$ are given by the blue, green, and red lines respectively. The parameter set for this figure is: $(a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, \chi, d) = (1.25, 1.0, 0.25, 0.5, 1.25, 0.5, 0.25, 25, 0.1)$

Figure 6.  Spatio-temporal patterns: $u$ "wins" case. The first column shows the initial dynamics from the perturbation of the homogeneous steady state and the second column shows the spatio-temporal pattern that is achieved. In the last row $u(x, t)$, $v(x, t)$, and $w(x, t)$ are given by the blue, green, and red lines respectively. The parameter set for this figure is: $(a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, \chi, d) = (0.9, 1.1, 0.2, 0.2, 1.09, 0.5, 1.0, 16, 0.25)$

Figure 7.  Attracting ($\chi < 0$) case: In this example the parameters are chosen so that in the pure competition system $v$ "wins". Note that while parameters are such that in the absence of a attracing prey-taxis mechanism by $u$, a predator mediated coexistence is expected; yet, once this state is disrupted, the prey coexist with peak densities out of phase with the predator in the presence of this taxis mechanism. Parameter set for this figure is: $(a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, \chi, d) = (1.25, 1.00, 0.25, 0.50, 1.25, 0.5, 0.25, -0.1, 10)$

•  [1] B. E. Ainseba, M. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086-2105.  doi: 10.1016/j.nonrwa.2007.06.017. [2] N. D. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  doi: 10.1080/03605307908820113. [3] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson and B. Kehlet, et al., The FEniCS project, version 1.5, Archive Numerical Software, 3. doi: 10.11588/ans.2015.100.20553. [4] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte Math., 133, Teubner, Stuttgart, 1993, 9–126. doi: 10.1007/978-3-663-11336-2_1. [5] H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ: Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75. [6] B. Ayuso and L. D. Marini, Discontinuous Galerkin methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 47 (2009), 1391-1420.  doi: 10.1137/080719583. [7] M. Bendahmane, Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis, Netw. Heterog. Media, 3 (2008), 863-879.  doi: 10.3934/nhm.2008.3.863. [8] M. Burger and J.-F. Pietschmann, Flow characteristics in a crowded transport model, Nonlinearity, 29 (2016), 3528-3550.  doi: 10.1088/0951-7715/29/11/3528. [9] G. Caristi, K. P. Rybakowski and T. Wessolek, Persistence and spatial patterns in a onepredator-two-prey Lotka-Volterra model with diffusion, Ann. Mat. Pura Appl. (4), 161 (1992), 345–377. doi: 10.1007/BF01759645. [10] J. M. Chase, P. A. Abrams, J. P. Grover, S. Diehl and P. Chesson, et al., The interaction between predation and competition: A review and synthesis, Ecology Lett., 5 (2002), 302–315. doi: 10.1046/j.1461-0248.2002.00315.x. [11] A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.  doi: 10.3934/krm.2012.5.51. [12] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701. [13] N. Cramer and R. May, Interspecific competition, predation and species diversity: A comment, J. Theoretical Biology, 34 (1972), 289-293.  doi: 10.1016/0022-5193(72)90162-2. [14] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Mathematics & Applications, 69, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-22980-0. [15] W. Feng, Coexistence, stability, and limiting behavior in a one-predator-two-prey model, J. Math. Anal. Appl., 179 (1993), 592-609.  doi: 10.1006/jmaa.1993.1371. [16] C. Gai, Q. Wang and J. Yan, Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015), 1239-1284.  doi: 10.3934/dcds.2015.35.1239. [17] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3. [18] D. Horstmann et al., From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103–165. [19] S. Hsu, Predator-mediated coexistence and extinction, Math. Biosci., 54 (1981), 231-248.  doi: 10.1016/0025-5564(81)90088-2. [20] G. E. Hutchinson, The paradox of the plankton, Amer. Naturalist, 95 (1961), 137-145.  doi: 10.1086/282171. [21] H.-Y. Jin and Z.-A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.  doi: 10.1016/j.jde.2015.08.040. [22] P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Amer. Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707. [23] P. Korman and A. W. Leung, A general monotone scheme for elliptic systems with applications to ecological models, Proc. Roy. Soc. Edinburgh Sect. A, 102 (1986), 315-325.  doi: 10.1017/S0308210500026391. [24] A. Kurganov and M. Lukáčová-Medvid'ová, Numerical study of two-species chemotaxis models, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 131-152.  doi: 10.3934/dcdsb.2014.19.131. [25] N. Lakos, Existence of steady-state solutions for a one-predator-two-prey system, SIAM J. Math. Anal., 21 (1990), 647-659.  doi: 10.1137/0521034. [26] J. Lee, T. Hillen and M. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.  doi: 10.1080/17513750802716112. [27] C. Li and Z. Hong, Global existence of classical solutions to a three-species predator-prey model with two prey-taxes, J. Appl. Math., 2012, 12pp. doi: 10.1155/2012/702603. [28] Y. Li, K. Lin and C. Mu, Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system, Electronic J. Differential Equations, 2015 (2015), 1-13. [29] A. Logg, K.-A. Mardal and G. N. Wells, Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Book, Lecture Notes in Computational Science and Engineering, 84, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23099-8. [30] R. M. May, Stability in multispecies community models, Math. Biosci., 12 (1971), 59-79.  doi: 10.1016/0025-5564(71)90074-5. [31] J. Murray, Mathematical Biology. I: An Introduction, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002. doi: 10.1007/b98868. [32] R. T. Paine, Food web complexity and species diversity, Amer. Naturalist, 100 (1966), 65-75.  doi: 10.1086/282400. [33] J. Parrish and S. Saila, Interspecific competition, predation and species diversity, J. Theoretical Biology, 27 (1970), 207-220.  doi: 10.1016/0022-5193(70)90138-4. [34] J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108. [35] J. I. Tello and D. Wrzosek, Inter-species competition and chemorepulsion, J. Math. Anal. Appl., 459 (2018), 1233-1250.  doi: 10.1016/j.jmaa.2017.11.021. [36] S. Vȧge, G. Bratbak, J. Egge, M. Heldal and A. Larsen, et al., Simple models combining competition, defence and resource availability have broad implications in pelagic microbial food webs, Ecology Lett., 21 (2018), 1440–1452. doi: 10.1111/ele.13122. [37] X. Wang, W. Wang and G. Zhang, Global bifurcation of solutions for a predator–prey model with prey-taxis, Math. Methods Appl. Sci., 38 (2015), 431-443.  doi: 10.1002/mma.3079. [38] X. Wang and X. Zou, Pattern formation of a predator-prey model with the cost of anti-predator behaviors, Math. Biosci. Eng., 15 (2018), 775-805.  doi: 10.3934/mbe.2018035. [39] Z. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos, 17 (2007), 13pp. doi: 10.1063/1.2766864. [40] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008. [41] D. Wrzosek, Global attractor for a chemotaxis model with prevention of overcrowding, Nonlinear Anal., 59 (2004), 1293-1310.  doi: 10.1016/j.na.2004.08.015. [42] S. Wu, J. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.

Figures(7)