[1]
|
T. Ammunét, T. Klemola and K. Parvinen, Consequences of asymmetric competition between resident and invasive defoliators: A novel empirically based modelling approach, Theor. Popul. Biol., 92 (2014), 107-117.
doi: 10.1016/j.tpb.2013.12.006.
|
[2]
|
R. M. Anderson and R. M. May, Coevolution of hosts and parasites, Parasitology, 85 (1982), 411-426.
doi: 10.1017/S0031182000055360.
|
[3]
|
J. Antonovics and P. H. Thrall, The cost of resistance and the maintenance of genetic polymorphism in host-pathogen systems, Proc. Roy. Soc. B, 257 (1994), 105-110.
doi: 10.1098/rspb.1994.0101.
|
[4]
|
A. Best, R. Bowers and A. White, Evolution, the loss of diversity and the role of trade-offs, Math. Biosci., 264 (2015), 86-93.
doi: 10.1016/j.mbs.2015.03.011.
|
[5]
|
A. Best, H. Tidbury, A. White and M. Boots, The evolutionary dynamics of within-generation immune priming in invertebrate hosts, J. Royal Society Interface, 10 (2013).
doi: 10.1098/rsif.2012.0887.
|
[6]
|
A. Best, A. White and M. Boots, The implications of coevolutionary dynamics to host-parasite interactions, Amer. Naturalist, 173 (2009), 779-791.
doi: 10.1086/598494.
|
[7]
|
A. Best, A. White and M. Boots, The evolution of host defence when parasites impact reproduction, Evolutionary Ecology Research, 18 (2017), 393-409.
|
[8]
|
B. Boldin, S. A. H. Geritz and É. Kisdi, Superinfections and adaptive dynamics of pathogen virulence revisited: A critical function analysis, Evolutionary Ecology Research, 11 (2009), 153-175.
|
[9]
|
M. H. Bonds, Host life-history strategy explains parasite-induced sterility, Amer. Naturalist, 168 (2006), 281-293.
doi: 10.1086/506922.
|
[10]
|
M. Boots, A. Best, M. R. Miller and A. White, The role of ecological feedbacks in the evolution of host defence: What does theory tell us, Philos. Trans. Roy. Soc. B, 364 (2009), 27-36.
doi: 10.1098/rstb.2008.0160.
|
[11]
|
M. Boots and M. Begon, Trade-offs with resistance to a granulosis virus in the Indian meal moth, examined by a laboratory evolution experiment, Functional Ecology, 7 (1993), 528-534.
doi: 10.2307/2390128.
|
[12]
|
M. Boots and R. G. Bowers, Three mechanisms of host resistance to microparasites–avoidance, recovery and tolerance–show different evolutionary dynamics, J. Theoretical Biology, 201 (1999), 13-23.
doi: 10.1006/jtbi.1999.1009.
|
[13]
|
M. Boots and R. G. Bowers, The evolution of resistance through costly acquired immunity, Proc. Roy. Soc. B, 271 (2004), 715-723.
doi: 10.1098/rspb.2003.2655.
|
[14]
|
M. Boots and Y. Haraguchi, The evolution of costly resistance in host-parasite systems, Amer. Naturalist, 153 (1999), 359-370.
doi: 10.1086/303181.
|
[15]
|
M. Boots, A. White, A. Best and R. Bowers, How specificity and epidemiology drive the coevolution of static trait diversity in hosts and parasites, Evolution, 68 (2014), 1594-1606.
doi: 10.1111/evo.12393.
|
[16]
|
R. G. Bowers, A. Hoyle, A. White and M. Boots, The geometric theory of adaptive evolution: Trade-off and invasion plots, J. Theoret. Biol., 233 (2005), 363-377.
doi: 10.1016/j.jtbi.2004.10.017.
|
[17]
|
R. G. Bowers, The basic depression ratio of the host: The evolution of host resistance to microparasites, Proc. Roy. Soc. B, 268 (2001), 243-250.
doi: 10.1098/rspb.2000.1360.
|
[18]
|
R. G. Bowers, A baseline model for the apparent competition between many host strains: The evolution of host resistance to microparasites, J. Theoret. Biol., 200 (1999), 65-75.
doi: 10.1006/jtbi.1999.0976.
|
[19]
|
R. G. Bowers, M. Boots and M. Begon, Life-history trade-offs and the evolution of pathogen resistance: Competition between host strains, Proc. Roy. Soc. B, 257 (1994), 247-253.
doi: 10.1098/rspb.1994.0122.
|
[20]
|
R. S. Cantrell, C. Cosner and K. Y. Lam, Resident-invader dynamics in infinite dimensional systems, J. Differential Equations, 263 (2017), 4565-4616.
doi: 10.1016/j.jde.2017.05.029.
|
[21]
|
F. B. Christiansen, On conditions for evolutionary stability for a continuously varying character, Amer. Naturalist, 138 (1991), 37-50.
doi: 10.1086/285203.
|
[22]
|
R. Cressman, CSS, NIS and dynamic stability for two-species behavioral models with continuous trait spaces, J. Theoret. Biol., 262 (2010), 80-89.
doi: 10.1016/j.jtbi.2009.09.019.
|
[23]
|
F. Dercole and S. Rinaldi, Analysis of Evolutionary Processes: The Adaptative Dynamics Approach and its Applications, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2008.
doi: 10.1515/9781400828340.
|
[24]
|
F. Dercole, Remarks on branching-extinction evolutionary cycles, J. Math. Biol., 47 (2003), 569-580.
doi: 10.1007/s00285-003-0236-4.
|
[25]
|
U. Dieckmann and M. Doebeli, On the origin of species by sympatric speciation, Nature, 400 (1999), 354-357.
doi: 10.1038/22521.
|
[26]
|
O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67 (2005), 257-271.
doi: 10.1016/j.tpb.2004.12.003.
|
[27]
|
U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612.
doi: 10.1007/BF02409751.
|
[28]
|
U. Dieckmann, J. A. J. Metz and M. W. Sabelis, Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, Cambridge University Press, Cambridge, 2005.
doi: 10.1017/CBO9780511525728.
|
[29]
|
M. Doebeli and U. Dieckmann, Evolutionary branching and sympatric speciation caused by different types of ecological interactions, Amer. Naturalist, 156 (2000), S77–S101.
doi: 10.1086/303417.
|
[30]
|
I. Eshel, Evolutionary and continuous stability, J. Theoret. Biol., 103 (1983), 99-111.
doi: 10.1016/0022-5193(83)90201-1.
|
[31]
|
C. Ferris and A. Best, The evolution of host defence to parasitism in fluctuating environments, J. Theoret. Biol., 440 (2018), 58-65.
doi: 10.1016/j.jtbi.2017.12.006.
|
[32]
|
S. Gandon, P. Agnew and Y. Michalakis, Coevolution between parasite virulence and host life-history traits, Amer. Naturalist, 160 (2002), 374-388.
doi: 10.1086/341525.
|
[33]
|
F. Gascuel, M. Choisy and J. M. Duplantier, et al., Host resistance, population structure and the long-term persistence of bubonic plague: Contributions of a modelling approach in the Malagasy focus, PLoS Comput. Biol., 9 (2013).
doi: 10.1371/journal.pcbi.1003039.
|
[34]
|
S. A. H. Geritz, É. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology, 12 (1998), 35-57.
doi: 10.1023/A:1006554906681.
|
[35]
|
S. A. H. Geritz, E. van der Meijden and J. A. J. Metz, Evolutionary dynamics of seed size and seedling competitive ability, Theor. Popul. Biol., 55 (1999), 324-343.
doi: 10.1006/tpbi.1998.1409.
|
[36]
|
S. A. H. Geritz, É. Kisdi and P. Yan, Evolutionary branching and long-term coexistence of cycling predators: Critical function analysis, Theor. Popul. Biol., 71 (2007), 424-435.
doi: 10.1016/j.tpb.2007.03.006.
|
[37]
|
S. A. H. Geritz, M. Gyllenberg, F. J. A. Jacobs and K. Parvinen, Invasion dynamics and attractor inheritance, J. Math. Biol., 44 (2002), 548-560.
doi: 10.1007/s002850100136.
|
[38]
|
S. A. H. Geritz, Resident-invader dynamics and the coexistence of similar strategies, J. Math. Biol., 50 (2005), 67-82.
doi: 10.1007/s00285-004-0280-8.
|
[39]
|
A. Hoyle, R. G. Bowers, A. White and M. Boots, The influence of trade-off shape on evolutionary behaviour in classical ecological scenarios, J. Theoret. Biol., 250 (2008), 498-511.
doi: 10.1016/j.jtbi.2007.10.009.
|
[40]
|
J. Johansson, J. Ripa and N. Kuckländer, The risk of competitive exclusion during evolutionary branching: Effects of resource variability, correlation and autocorrelation, Theor. Popul. Biol., 77 (2010), 95-104.
doi: 10.1016/j.tpb.2009.10.007.
|
[41]
|
É. Kisdi and S. A. H. Geritz, Adaptive dynamics of saturated polymorphisms, J. Math. Biol., 72 (2016), 1039-1079.
doi: 10.1007/s00285-015-0948-2.
|
[42]
|
É. Kisdi, Evolutionary branching under asymmetric competition, J. Theoret. Biol., 197 (1999), 149-162.
doi: 10.1006/jtbi.1998.0864.
|
[43]
|
É. Kisdi, Trade-off geometries and the adaptive dynamics of two co-evolving species, Evolutionary Ecology Research, 8 (2006), 959-973.
|
[44]
|
É. Kisdi, F. J. A. Jacobs and S. A. H. Geritz, Red Queen evolution by cycles of evolutionary branching and extinction, Selection, 2 (2002), 161-176.
doi: 10.1556/Select.2.2001.1-2.12.
|
[45]
|
A. R. Kraaijeveld and H. C. J. Godfray, Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster, Nature, 389 (1997), 278-280.
doi: 10.1038/38483.
|
[46]
|
A. R. Kraaijeveld, S. J. Layen and P. H. Futerman, et al., Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster, PloS One, 7 (2012).
doi: 10.1371/journal.pone.0053002.
|
[47]
|
P. Landi, F. Dercole and S. Rinaldi, Branching scenarios in eco-evolutionary prey-predator models, SIAM J. Appl. Math., 73 (2013), 1634-1658.
doi: 10.1137/12088673X.
|
[48]
|
R. Law, P. Marrow and U. Dieckmann, On evolution under asymmetric competition, Evolutionary Ecology, 11 (1997), 485-501.
doi: 10.1023/A:1018441108982.
|
[49]
|
O. Leimar, Multidimensional convergence stability, Evolutionary Ecology Research, 11 (2009), 191-208.
|
[50]
|
B. Lemaitre and J. Hoffmann, The host defense of Drosophila melanogaster, Annual Rev. Immunology, 25 (2007), 697-743.
doi: 10.1146/annurev.immunol.25.022106.141615.
|
[51]
|
S. Lion and J. A. J. Metz, Beyond $R_{0}$ Maximisation: On pathogen evolution and environmental dimensions, Trends Ecol. Evol., 33 (2018), 458-473.
doi: 10.1016/j.tree.2018.02.004.
|
[52]
|
J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, Cambridge, 1982.
doi: 10.1017/CBO9780511806292.
|
[53]
|
C. de Mazancourt and U. Dieckmann, Trade-off geometries and frequency-dependent selection, Amer. Naturalist, 164 (2004), 765-778.
doi: 10.1086/424762.
|
[54]
|
M. A. Mealor and M. Boots, An indirect approach to imply trade-off shapes: Population level patterns in resistance suggest a decreasingly costly resistance mechanism in a model insect system, J. Evolutionary Biol., 19 (2006), 326-330.
doi: 10.1111/j.1420-9101.2005.01031.x.
|
[55]
|
R. Medzhitov, Recognition of microorganisms and activation of the immune response, Nature, 449 (2007), 819-826.
doi: 10.1038/nature06246.
|
[56]
|
J. A. J. Metz, R. M. Nisbet and S. A. H. Geritz, How should we define 'fitness' for general ecological scenarios?, Trends Ecol. Evol., 7 (1992), 198-202.
doi: 10.1016/0169-5347(92)90073-K.
|
[57]
|
G. Meszéna, M. Gyllenberg, F. J. Jacobs and J. A. J. Metz, Link between population dynamics and dynamics of Darwinian evolution, Phys. Rev. Lett., 95 (2005).
doi: 10.1103/PhysRevLett.95.078105.
|
[58]
|
M. R. Miller, A. White and M. Boots, The evolution of host resistance: Tolerance and control as distinct strategies, J. Theoret. Biol., 236 (2005), 198-207.
doi: 10.1016/j.jtbi.2005.03.005.
|
[59]
|
M. R. Miller, A. White and M. Boots, The evolution of parasites in response to tolerance in their hosts: The good, the bad and apparent commensalism, Evolution, 60 (2006), 945-956.
doi: 10.1111/j.0014-3820.2006.tb01173.x.
|
[60]
|
M. R. Miller, A. White and M. Boots, Host life span and the evolution of resistance characteristics, Evolution, 61 (2007), 2-14.
doi: 10.1111/j.1558-5646.2007.00001.x.
|
[61]
|
M. A. Nowak and K. Sigmund, Evolutionary dynamics of biological games, Science, 303 (2004), 793-799.
doi: 10.1126/science.1093411.
|
[62]
|
K. Parvinen, Evolutionary suicide, Acta Biotheoretica, 53 (2005), 241-264.
doi: 10.1007/s10441-005-2531-5.
|
[63]
|
A. Peschel and H. G. Sahl, The co-evolution of host cationic antimicrobial peptides and microbial resistance, Nature Rev. Microbiology, 4 (2006), 529-536.
doi: 10.1038/nrmicro1441.
|
[64]
|
O. Restif and J. C. Koella, Shared control of epidemiological traits in a coevolutionary model of host-parasite interactions, Amer. Naturalist, 161 (2003), 827-836.
doi: 10.1086/375171.
|
[65]
|
O. Restif and J. C. Koella, Concurrent evolution of resistance and tolerance to pathogens, Amer. Naturalist, 164 (2004), E90–E102.
doi: 10.1086/423713.
|
[66]
|
D. A. Roff, Life History Evolution, Sinauer Associates, Sunderland, MA, 2002.
|
[67]
|
B. A. Roy and J. W. Kirchner, Evolutionary dynamics of pathogen resistance and tolerance, Evolution, 54 (2000), 51-63.
doi: 10.1111/j.0014-3820.2000.tb00007.x.
|
[68]
|
J. Sardanyés and R. V. Solé, Chaotic stability in spatially-resolved host-parasite replicators: The Red Queen on a lattice, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 589-606.
doi: 10.1142/S0218127407017458.
|
[69]
|
E. Shim and A. P. Galvani, Evolutionary repercussions of avian culling on host resistance and influenza virulence, PloS One, 4 (2009).
doi: 10.1371/journal.pone.0005503.
|
[70]
|
M. L. Simoes, E. P. Caragata and G. Dimopoulos, Diverse host and restriction factors regulate mosquito-pathogen interactions, Trends in Parasitology, 34 (2018), 603-616.
doi: 10.1016/j.pt.2018.04.011.
|
[71]
|
S. C. Stearns, The Evolution of Life Histories, Oxford University Press, Oxford, 1992.
|
[72]
|
T. O. Svennungsen and É. Kisdi, Evolutionary branching of virulence in a single-infection model, J. Theoret. Biol., 257 (2009), 408-418.
doi: 10.1016/j.jtbi.2008.11.014.
|
[73]
|
A. N. Theodosopoulos, A. K. Hund and S. A. Taylor, Parasites and host species barriers in animal hybrid zones, Trends Ecol. Evol., 34 (2019), 19-30.
doi: 10.1016/j.tree.2018.09.011.
|
[74]
|
W. Wang, Y. Li and H. W. Hethcote, Bifurcations in a host-parasite model with nonlinear incidence, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 3291-3307.
doi: 10.1142/S0218127406016793.
|
[75]
|
J. Zu, K. F. Wang and M. Mimura, Evolutionary branching and evolutionarily stable coexistence of predator species: Critical function analysis, Math. Biosci., 231 (2011), 210-224.
doi: 10.1016/j.mbs.2011.03.007.
|
[76]
|
J. Zu, J. L. Wang and J. Q. Du, Adaptive evolution of defense ability leads to diversification of prey species, Acta Biotheoretica, 62 (2014), 207-234.
doi: 10.1007/s10441-014-9218-8.
|
[77]
|
J. Zu, B. Yuan and J. Q. Du, Top predators induce the evolutionary diversification of intermediate predator species, J. Theoret. Biol., 387 (2015), 1-12.
doi: 10.1016/j.jtbi.2015.09.024.
|