doi: 10.3934/dcdsb.2020052

Long-term orbit dynamics viewed through the yellow main component in the parameter space of a family of optimal fourth-order multiple-root finders

Department of Applied Mathematics, Dankook University, Cheonan, Korea 330-714

* Corresponding author

Received  April 2019 Revised  October 2019 Published  February 2020

Fund Project: The first author (Y.H. Geum) is supported by research grant NRF-2018R1D1A1B07047715 from National Research Foundation of Korea

An analysis based on an elementary theory of plane curves is presented to locate bifurcation points from a main component in the parameter space of a family of optimal fourth-order multiple-root finders. We explore the basic dynamics of the iterative multiple-root finders under the Möbius conjugacy map on the Riemann sphere. A linear stability theory on local bifurcations is developed from the viewpoint of an arbitrarily small perturbation about the fixed point of the iterative map with a control parameter. Invariant conjugacy properties are established for the fixed point and its multiplier. The parameter spaces and dynamical planes are investigated to analyze the underlying dynamics behind the iterative map. Numerical experiments support the theory of locating bifurcation points of satellite and primitive components in the parameter space.

Citation: Young Hee Geum, Young Ik Kim. Long-term orbit dynamics viewed through the yellow main component in the parameter space of a family of optimal fourth-order multiple-root finders. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020052
References:
[1]

L. V. Ahlfors, Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978.  Google Scholar

[2]

J. Ainsworth, M. Dawson, J. Pianta and J. Warwick, The Farey Sequence, 2003. Available from: http://www.maths.ed.ac.uk/aar/fareyproject.pdf. Google Scholar

[3]

S. AmatS. Busquier and S. Plaza, Review of some iterative root-finding methods from a dynamical point of view, Sci. Ser. A Math. Sci. (N.S.), 10 (2004), 3-35.   Google Scholar

[4]

I. K. Argyros and Á. A. Magreñán, On the convergence of an optimal fourth-order family of methods and its dynamics, Appl. Math. Comput., 252 (2015), 336-346.  doi: 10.1016/j.amc.2014.11.074.  Google Scholar

[5]

A. F. Beardon, Iteration of Rational Functions. Complex Analytic Dynamical Systems, Graduate Texts in Mathematics, 132, Springer-Verlag, New York, 1991.  Google Scholar

[6]

R. BehlA. CorderoS. Motsa and J. Torregrosa, On developing fourth-order optimal families of methods for multiple roots and their dynamics, Appl. Math. Comput., 265 (2015), 520-532.  doi: 10.1016/j.amc.2015.05.004.  Google Scholar

[7]

R. BehlA. CorderoS. MotsaJ. Torregrosa and V. Kanwar, An optimal fourth-order family of methods for multiple roots and its dynamics, Numer. Algorithms, 71 (2016), 775-796.  doi: 10.1007/s11075-015-0023-5.  Google Scholar

[8]

R. BehlA. CorderoS. Motsa and J. Torregrosa, Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations, Nonlinear Dynam., 91 (2018), 81-112.  doi: 10.1007/s11071-017-3858-6.  Google Scholar

[9]

P. Blanchard, The Dynamics of Newton's Method, Proc. Sympos. Appl. Math., 49, AMS Short Course Lecture Notes, Amer. Math. Soc., Providence, RI, 1994 doi: 10.1090/psapm/049/1315536.  Google Scholar

[10]

B. CamposA. CorderoJ. R. Torregrosa and P. Vindel, Orbits of period two in the family of a multipoint variant of Chebyshev-Halley family, Numer. Algorithms, 73 (2016), 141-156.  doi: 10.1007/s11075-015-0089-0.  Google Scholar

[11]

L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4364-9.  Google Scholar

[12]

F. ChicharroA. Cordero and J. R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods, Scientific World Journal, 2013 (2013), 1-11.  doi: 10.1155/2013/780153.  Google Scholar

[13]

C. Chun, B. Neta and S. Kim, On Jarratt's family of optimal fourth-order iterative methods and their dynamics, Fractals, 22 (2014), 16pp. doi: 10.1142/S0218348X14500133.  Google Scholar

[14]

A. CorderoJ. García-MaimóJ. R. TorregrosaM. P. Vassileva and P. Vindel, Chaos in King's iterative family, Appl. Math. Lett., 26 (2013), 842-848.  doi: 10.1016/j.aml.2013.03.012.  Google Scholar

[15]

R. L. Devaney, Complex dynamical systems: The mathematics behind the Mandelbrot and Julia sets, Proceedings of Symposia in Applied Mathematics, 49, American Mathematical Society, 1994, 1–29. Google Scholar

[16]

M. García-OlívoJ. M. Gutíerrez and Á. A. Magreñán, A complex dynamical approach of Chebyshev's method, SeMA J., 71 (2015), 57-68.  doi: 10.1007/s40324-015-0046-9.  Google Scholar

[17]

Y. H. Geum and Y. I. Kim, A two-parameter family of fourth-order iterative methods with optimal convergence for multiple zeros, J. Appl. Math., 2013 (2013), 1-7.  doi: 10.1155/2013/369067.  Google Scholar

[18]

Y. H. GeumY. I. Kim and B. Neta, Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points, J. Comput. Appl. Math., 333 (2018), 131-156.  doi: 10.1016/j.cam.2017.10.033.  Google Scholar

[19]

Y. H. GeumY. I. Kim and Á. A. Magreñán, A biparametric extension of King's fourth-order methods and their dynamics, Appl. Math. Comput., 282 (2016), 254-275.  doi: 10.1016/j.amc.2016.02.020.  Google Scholar

[20]

Y. H. GeumY. I. Kim and Á. A. Magreñán, A study of dynamics via Mobius conjugacy map on a family of sixth-order modified Newton-like multiple-zero finders with bivariate polynomial weight functions, J. Comput. Appl. Math., 344 (2018), 608-623.  doi: 10.1016/j.cam.2018.06.006.  Google Scholar

[21]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[22]

D. Gulick, Encounters with Chaos, McGraw-Hill Inc., 1992. Google Scholar

[23] A. V. Holden, Chaos, Princeton University Press, Princeton, New Jersey, 1986.   Google Scholar
[24]

H. T. Kung and J. F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Mach., 21 (1974), 643-651.  doi: 10.1145/321850.321860.  Google Scholar

[25]

Á. A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods, Appl. Math. Comput., 233 (2014), 29-38.  doi: 10.1016/j.amc.2014.01.037.  Google Scholar

[26]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods, John Wiley & Sons, New York, 2008. doi: 10.1002/9783527617548.  Google Scholar

[27]

B. NetaM. Scott and C. Chun, Basin attractors for various methods for multiple roots, Appl. Math. Comput., 218 (2012), 5043-5066.  doi: 10.1016/j.amc.2011.10.071.  Google Scholar

[28]

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Classics in Applied Mathematics, 30, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. doi: 10.1137/1.9780898719468.  Google Scholar

[29]

H. Peitgen and P. Richter, The Beauty of Fractals. Images of Complex Dynamical Systems, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61717-1.  Google Scholar

[30]

X. WangT. Zhang and Y. Qin, Efficient two-step derivative-free iterative methods with memory and their dynamics, Int. J. Comput. Math., 93 (2016), 1423-1446.  doi: 10.1080/00207160.2015.1056168.  Google Scholar

[31]

S. Wolfram, The Mathematica Book, Wolfram Media, Inc., Champaign, 2003. Google Scholar

[32]

X. ZhouX. Chen and Y. Song, Families of third and fourth order methods for multiple roots of nonlinear equations, Appl. Math. Comput., 219 (2013), 6030-6038.  doi: 10.1016/j.amc.2012.12.041.  Google Scholar

show all references

References:
[1]

L. V. Ahlfors, Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978.  Google Scholar

[2]

J. Ainsworth, M. Dawson, J. Pianta and J. Warwick, The Farey Sequence, 2003. Available from: http://www.maths.ed.ac.uk/aar/fareyproject.pdf. Google Scholar

[3]

S. AmatS. Busquier and S. Plaza, Review of some iterative root-finding methods from a dynamical point of view, Sci. Ser. A Math. Sci. (N.S.), 10 (2004), 3-35.   Google Scholar

[4]

I. K. Argyros and Á. A. Magreñán, On the convergence of an optimal fourth-order family of methods and its dynamics, Appl. Math. Comput., 252 (2015), 336-346.  doi: 10.1016/j.amc.2014.11.074.  Google Scholar

[5]

A. F. Beardon, Iteration of Rational Functions. Complex Analytic Dynamical Systems, Graduate Texts in Mathematics, 132, Springer-Verlag, New York, 1991.  Google Scholar

[6]

R. BehlA. CorderoS. Motsa and J. Torregrosa, On developing fourth-order optimal families of methods for multiple roots and their dynamics, Appl. Math. Comput., 265 (2015), 520-532.  doi: 10.1016/j.amc.2015.05.004.  Google Scholar

[7]

R. BehlA. CorderoS. MotsaJ. Torregrosa and V. Kanwar, An optimal fourth-order family of methods for multiple roots and its dynamics, Numer. Algorithms, 71 (2016), 775-796.  doi: 10.1007/s11075-015-0023-5.  Google Scholar

[8]

R. BehlA. CorderoS. Motsa and J. Torregrosa, Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations, Nonlinear Dynam., 91 (2018), 81-112.  doi: 10.1007/s11071-017-3858-6.  Google Scholar

[9]

P. Blanchard, The Dynamics of Newton's Method, Proc. Sympos. Appl. Math., 49, AMS Short Course Lecture Notes, Amer. Math. Soc., Providence, RI, 1994 doi: 10.1090/psapm/049/1315536.  Google Scholar

[10]

B. CamposA. CorderoJ. R. Torregrosa and P. Vindel, Orbits of period two in the family of a multipoint variant of Chebyshev-Halley family, Numer. Algorithms, 73 (2016), 141-156.  doi: 10.1007/s11075-015-0089-0.  Google Scholar

[11]

L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4364-9.  Google Scholar

[12]

F. ChicharroA. Cordero and J. R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods, Scientific World Journal, 2013 (2013), 1-11.  doi: 10.1155/2013/780153.  Google Scholar

[13]

C. Chun, B. Neta and S. Kim, On Jarratt's family of optimal fourth-order iterative methods and their dynamics, Fractals, 22 (2014), 16pp. doi: 10.1142/S0218348X14500133.  Google Scholar

[14]

A. CorderoJ. García-MaimóJ. R. TorregrosaM. P. Vassileva and P. Vindel, Chaos in King's iterative family, Appl. Math. Lett., 26 (2013), 842-848.  doi: 10.1016/j.aml.2013.03.012.  Google Scholar

[15]

R. L. Devaney, Complex dynamical systems: The mathematics behind the Mandelbrot and Julia sets, Proceedings of Symposia in Applied Mathematics, 49, American Mathematical Society, 1994, 1–29. Google Scholar

[16]

M. García-OlívoJ. M. Gutíerrez and Á. A. Magreñán, A complex dynamical approach of Chebyshev's method, SeMA J., 71 (2015), 57-68.  doi: 10.1007/s40324-015-0046-9.  Google Scholar

[17]

Y. H. Geum and Y. I. Kim, A two-parameter family of fourth-order iterative methods with optimal convergence for multiple zeros, J. Appl. Math., 2013 (2013), 1-7.  doi: 10.1155/2013/369067.  Google Scholar

[18]

Y. H. GeumY. I. Kim and B. Neta, Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points, J. Comput. Appl. Math., 333 (2018), 131-156.  doi: 10.1016/j.cam.2017.10.033.  Google Scholar

[19]

Y. H. GeumY. I. Kim and Á. A. Magreñán, A biparametric extension of King's fourth-order methods and their dynamics, Appl. Math. Comput., 282 (2016), 254-275.  doi: 10.1016/j.amc.2016.02.020.  Google Scholar

[20]

Y. H. GeumY. I. Kim and Á. A. Magreñán, A study of dynamics via Mobius conjugacy map on a family of sixth-order modified Newton-like multiple-zero finders with bivariate polynomial weight functions, J. Comput. Appl. Math., 344 (2018), 608-623.  doi: 10.1016/j.cam.2018.06.006.  Google Scholar

[21]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[22]

D. Gulick, Encounters with Chaos, McGraw-Hill Inc., 1992. Google Scholar

[23] A. V. Holden, Chaos, Princeton University Press, Princeton, New Jersey, 1986.   Google Scholar
[24]

H. T. Kung and J. F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Mach., 21 (1974), 643-651.  doi: 10.1145/321850.321860.  Google Scholar

[25]

Á. A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods, Appl. Math. Comput., 233 (2014), 29-38.  doi: 10.1016/j.amc.2014.01.037.  Google Scholar

[26]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods, John Wiley & Sons, New York, 2008. doi: 10.1002/9783527617548.  Google Scholar

[27]

B. NetaM. Scott and C. Chun, Basin attractors for various methods for multiple roots, Appl. Math. Comput., 218 (2012), 5043-5066.  doi: 10.1016/j.amc.2011.10.071.  Google Scholar

[28]

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Classics in Applied Mathematics, 30, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. doi: 10.1137/1.9780898719468.  Google Scholar

[29]

H. Peitgen and P. Richter, The Beauty of Fractals. Images of Complex Dynamical Systems, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61717-1.  Google Scholar

[30]

X. WangT. Zhang and Y. Qin, Efficient two-step derivative-free iterative methods with memory and their dynamics, Int. J. Comput. Math., 93 (2016), 1423-1446.  doi: 10.1080/00207160.2015.1056168.  Google Scholar

[31]

S. Wolfram, The Mathematica Book, Wolfram Media, Inc., Champaign, 2003. Google Scholar

[32]

X. ZhouX. Chen and Y. Song, Families of third and fourth order methods for multiple roots of nonlinear equations, Appl. Math. Comput., 219 (2013), 6030-6038.  doi: 10.1016/j.amc.2012.12.041.  Google Scholar

Figure 1.  Bifurcations on the stability unit circle
Figure 2.  Stability circle $ \boldsymbol S $ for strange fixed point $ z = 1 $
Figure 3.  Stability surfaces of strange fixed points $ \xi = 1 $
Figure 4.  Stability surfaces of the strange fixed points $ \xi_j, 1 \le j \le 2 $ from the roots of $ T(\xi;\lambda) $
Figure 6.  Parameter space $ \mathcal{P} $, red and yellow main components $ \mathcal{H}_1 $
Figure 5.  Color chart defined in Table 1
Figure 7.  Bifurcation points $ {\lambda}_t $ of $ t $-periodic components in $ \mathcal{P} $
Figure 8.  Dynamical planes for various values of $ {\lambda} $-parameters
Figure 9.  Typical geometries for primitive and satellite components
Table 1.  Coloring scheme for a $ q $-periodic orbit with $ q \in \mathbb{N}\cup \{0 \} $
$ q $ $ C_q $
1 $ C_1 (\rm{fixed\; point}\; \infty) $ magenta $ C_1(\rm{fixed \; point} \; 0) $ cyan $ C_1(\rm{fixed \; point} \; 1) $ yellow $ C_{1}(\rm{other\; strange\; fixed\; point}) $ red
$ C_{2} $ $ C_{3} $ $ C_{4} $ $ C_{5} $ $ C_{6} $ $ C_{7} $ $ C_{8} $ $ C_{9} $
orange light green brown blue green dark yellow antiquewhite light pink
$ 2\le q\le 80 $ $ C_{10} $ $ C_{11} $ $ C_{12} $ $ C_{13} $ $ C_{14} $ $ C_{15} $ $ C_{16} $ $ C_{17} $
khaki melon thistle lavender turquoise plum orchid medium orchid
$ C_{18} $ $ C_{19} $ $ C_{20} $ $ C_{21} $ $ C_{22} $ $ C_{23} $ $ C_{24} $ $ C_{25} $
blue violet dark orchid purple powder blue sky blue deep sky blue dodger blue royal blue
$ C_{26} $ $ C_{27} $ $ C_{28} $ $ C_{29} $ $ C_{30} $ $ C_{31} $ $ C_{32} $ $ C_{33} $
medium spring green apple green medium sea green forest green dark blue olive drab bisque moccasin
$ C_{34} $ $ C_{35} $ $ C_{36} $ $ C_{37} $ $ C_{38} $ $ C_{39} $ $ C_{40} $ $ C_{41} $
light salmon salmon light coral Indian red dark red peach puff fire brick sandy brown
$ C_{42} $ $ C_{43} $ $ C_{44} $ $ C_{45} $ $ C_{46} $ $ C_{47} $ $ C_{48} $ $ C_{49} $
wheat tomato orange red chocolate pink pale violet red deep pink violet red
$ C_{50} $ $ C_{51} $ $ C_{52} $ $ C_{53} $ $ C_{54} $ $ C_{55} $ $ C_{56} $ $ C_{57} $
gainsboro light gray dark gray gray charteruse electric indigo electric lime lime
$ C_{58} $ $ C_{59} $ $ C_{60} $ $ C_{61} $ $ C_{62} $ $ C_{63} $ $ C_{64} $ $ C_{65} $
silver teal pale turquoise rosy brown honeydew lemon chiffon misty rose mintcream
$ C_{66} $ $ C_{67} $ $ C_{68} $ $ C_{69} $ $ C_{70} $ $ C_{71} $ $ C_{72} $ $ C_{73} $
gold crimson light crimson lavenderblush slateblue light cyan coral light blue
$ C_{74} $ $ C_{75} $ $ C_{76} $ $ C_{77} $ $ C_{78} $ $ C_{79} $ $ C_{80} $
aquamarine light yellow peru violet papayawhip dark orange sea green
$ \stackrel{q = 0^\ast \mbox{ or}} {q> 80} $ black
∗: q = 0 implies a non-periodic but bounded orbit. These 84 colors are explicitly illustrated in Figure 5.
$ q $ $ C_q $
1 $ C_1 (\rm{fixed\; point}\; \infty) $ magenta $ C_1(\rm{fixed \; point} \; 0) $ cyan $ C_1(\rm{fixed \; point} \; 1) $ yellow $ C_{1}(\rm{other\; strange\; fixed\; point}) $ red
$ C_{2} $ $ C_{3} $ $ C_{4} $ $ C_{5} $ $ C_{6} $ $ C_{7} $ $ C_{8} $ $ C_{9} $
orange light green brown blue green dark yellow antiquewhite light pink
$ 2\le q\le 80 $ $ C_{10} $ $ C_{11} $ $ C_{12} $ $ C_{13} $ $ C_{14} $ $ C_{15} $ $ C_{16} $ $ C_{17} $
khaki melon thistle lavender turquoise plum orchid medium orchid
$ C_{18} $ $ C_{19} $ $ C_{20} $ $ C_{21} $ $ C_{22} $ $ C_{23} $ $ C_{24} $ $ C_{25} $
blue violet dark orchid purple powder blue sky blue deep sky blue dodger blue royal blue
$ C_{26} $ $ C_{27} $ $ C_{28} $ $ C_{29} $ $ C_{30} $ $ C_{31} $ $ C_{32} $ $ C_{33} $
medium spring green apple green medium sea green forest green dark blue olive drab bisque moccasin
$ C_{34} $ $ C_{35} $ $ C_{36} $ $ C_{37} $ $ C_{38} $ $ C_{39} $ $ C_{40} $ $ C_{41} $
light salmon salmon light coral Indian red dark red peach puff fire brick sandy brown
$ C_{42} $ $ C_{43} $ $ C_{44} $ $ C_{45} $ $ C_{46} $ $ C_{47} $ $ C_{48} $ $ C_{49} $
wheat tomato orange red chocolate pink pale violet red deep pink violet red
$ C_{50} $ $ C_{51} $ $ C_{52} $ $ C_{53} $ $ C_{54} $ $ C_{55} $ $ C_{56} $ $ C_{57} $
gainsboro light gray dark gray gray charteruse electric indigo electric lime lime
$ C_{58} $ $ C_{59} $ $ C_{60} $ $ C_{61} $ $ C_{62} $ $ C_{63} $ $ C_{64} $ $ C_{65} $
silver teal pale turquoise rosy brown honeydew lemon chiffon misty rose mintcream
$ C_{66} $ $ C_{67} $ $ C_{68} $ $ C_{69} $ $ C_{70} $ $ C_{71} $ $ C_{72} $ $ C_{73} $
gold crimson light crimson lavenderblush slateblue light cyan coral light blue
$ C_{74} $ $ C_{75} $ $ C_{76} $ $ C_{77} $ $ C_{78} $ $ C_{79} $ $ C_{80} $
aquamarine light yellow peru violet papayawhip dark orange sea green
$ \stackrel{q = 0^\ast \mbox{ or}} {q> 80} $ black
∗: q = 0 implies a non-periodic but bounded orbit. These 84 colors are explicitly illustrated in Figure 5.
Table 2.  Typical $ \ell/q $–bifurcation points $ {\lambda} $ for $ 1\le q \le 10 $ and $ 0 \le \ell \le 9 $
$ \ell $
$ q $ 0 1 2 3 4 5 6 7 8 9
$ 1 $ -4.4
$ 2 $ -3.81818
$ 3 $ $ \begin{pmatrix}-3.85567\\- 0.14285\end{pmatrix}^\ast $ $ \begin{pmatrix}-3.85567\\0.14285 \end{pmatrix} $
$ 4 $ $ \begin{pmatrix}-3.91781 \\- 0.219178\end{pmatrix} $ $ \begin{pmatrix}-3.91781\\0.219178 \end{pmatrix} $
$ 5 $ $ \begin{pmatrix}-3.98185 \\- 0.261606 \end{pmatrix} $ $ \begin{pmatrix}-3.8306 \\- 0.0840949 \end{pmatrix} $ $ \begin{pmatrix}-3.8306\\0.0840949 \end{pmatrix} $ $ \begin{pmatrix}-3.98185\\0.261606 \end{pmatrix} $
$ 6 $ $ \begin{pmatrix}-4.04082 \\- 0.282784 \end{pmatrix} $ $ \begin{pmatrix}-4.04082\\0.282784 \end{pmatrix} $
$ 7 $ $ \begin{pmatrix}-4.09231 \\- 0.290424 \end{pmatrix} $ $ \begin{pmatrix}-3.88575 \\- 0.186408\end{pmatrix} $ $ \begin{pmatrix}-3.82438 \\- 0.0597191 \end{pmatrix} $ $ \begin{pmatrix}-3.82438\\0.0597191 \end{pmatrix} $ $ \begin{pmatrix}-3.88575\\0.186408 \end{pmatrix} $ $ \begin{pmatrix}-4.09231\\0.290424 \end{pmatrix} $
$ 8 $ $ \begin{pmatrix}-4.13604 \\- 0.289658\end{pmatrix} $ $ \begin{pmatrix}-3.8381 \\- 0.105794 \end{pmatrix} $ $ \begin{pmatrix}-3.8381\\0.105794 \end{pmatrix} $ $ \begin{pmatrix}-4.13604\\0.289658 \end{pmatrix} $
$ 9 $ $ \begin{pmatrix}-4.17269 \\- 0.283871 \end{pmatrix} $ $ \begin{pmatrix}-3.95018 \\- 0.24367 \end{pmatrix} $ $ \begin{pmatrix}-3.8219 \\- 0.0463343 \end{pmatrix} $ $ \begin{pmatrix}-3.8219\\0.0463343 \end{pmatrix} $ $ \begin{pmatrix}-3.95018\\0.24367\end{pmatrix} $ $ \begin{pmatrix}-4.17269\\0.283871 \end{pmatrix} $
$ 10 $ $ \begin{pmatrix}-4.20324 \\- 0.275251 \end{pmatrix} $ $ \begin{pmatrix}-3.8754 \\- 0.173249\end{pmatrix} $ $ \begin{pmatrix}-3.8754\\0.173249\end{pmatrix} $ $ \begin{pmatrix}-4.20324\\0.275251\end{pmatrix} $
$ {}^\ast $: $ \begin{pmatrix}-3.85567\\- 0.14285\end{pmatrix} \equiv -3.85567- 0.14285 \; i, \; i = \sqrt{-1} $
$ \ell $
$ q $ 0 1 2 3 4 5 6 7 8 9
$ 1 $ -4.4
$ 2 $ -3.81818
$ 3 $ $ \begin{pmatrix}-3.85567\\- 0.14285\end{pmatrix}^\ast $ $ \begin{pmatrix}-3.85567\\0.14285 \end{pmatrix} $
$ 4 $ $ \begin{pmatrix}-3.91781 \\- 0.219178\end{pmatrix} $ $ \begin{pmatrix}-3.91781\\0.219178 \end{pmatrix} $
$ 5 $ $ \begin{pmatrix}-3.98185 \\- 0.261606 \end{pmatrix} $ $ \begin{pmatrix}-3.8306 \\- 0.0840949 \end{pmatrix} $ $ \begin{pmatrix}-3.8306\\0.0840949 \end{pmatrix} $ $ \begin{pmatrix}-3.98185\\0.261606 \end{pmatrix} $
$ 6 $ $ \begin{pmatrix}-4.04082 \\- 0.282784 \end{pmatrix} $ $ \begin{pmatrix}-4.04082\\0.282784 \end{pmatrix} $
$ 7 $ $ \begin{pmatrix}-4.09231 \\- 0.290424 \end{pmatrix} $ $ \begin{pmatrix}-3.88575 \\- 0.186408\end{pmatrix} $ $ \begin{pmatrix}-3.82438 \\- 0.0597191 \end{pmatrix} $ $ \begin{pmatrix}-3.82438\\0.0597191 \end{pmatrix} $ $ \begin{pmatrix}-3.88575\\0.186408 \end{pmatrix} $ $ \begin{pmatrix}-4.09231\\0.290424 \end{pmatrix} $
$ 8 $ $ \begin{pmatrix}-4.13604 \\- 0.289658\end{pmatrix} $ $ \begin{pmatrix}-3.8381 \\- 0.105794 \end{pmatrix} $ $ \begin{pmatrix}-3.8381\\0.105794 \end{pmatrix} $ $ \begin{pmatrix}-4.13604\\0.289658 \end{pmatrix} $
$ 9 $ $ \begin{pmatrix}-4.17269 \\- 0.283871 \end{pmatrix} $ $ \begin{pmatrix}-3.95018 \\- 0.24367 \end{pmatrix} $ $ \begin{pmatrix}-3.8219 \\- 0.0463343 \end{pmatrix} $ $ \begin{pmatrix}-3.8219\\0.0463343 \end{pmatrix} $ $ \begin{pmatrix}-3.95018\\0.24367\end{pmatrix} $ $ \begin{pmatrix}-4.17269\\0.283871 \end{pmatrix} $
$ 10 $ $ \begin{pmatrix}-4.20324 \\- 0.275251 \end{pmatrix} $ $ \begin{pmatrix}-3.8754 \\- 0.173249\end{pmatrix} $ $ \begin{pmatrix}-3.8754\\0.173249\end{pmatrix} $ $ \begin{pmatrix}-4.20324\\0.275251\end{pmatrix} $
$ {}^\ast $: $ \begin{pmatrix}-3.85567\\- 0.14285\end{pmatrix} \equiv -3.85567- 0.14285 \; i, \; i = \sqrt{-1} $
Table 3.  Typical numerical values of $ \{\xi, {\lambda} \} $ for satellite and primitive components with $ q k \le 8 $
$ (q, k) $ Type $ \xi $ $ \lambda $ Fig. No.
$ (2, 1) $ Primitive $ -0.23512621166835 + 1.6020106612492319\; i $ $ -1.951962936703127 -1.7485319734836857\; i $ 7(a)
$ (3, 1) $ Primitive $ 0.454659800907803 + 0\; i $ $ -5.219261654371707 + 0\; i $ 7(b)
$ (4, 1) $ Primitive $ 0.341977833651053 + 0.4814672920477362\; i $ $ -3.564458921821090 + 1.646535885566244\; i $ 7(c)
$ (5, 1) $ Primitive $ 0.757190777481740 + 0.2122872817258981\; i $ $ -4.045956427432157 + 0.346070091333350\; i $ 7(d)
$ (6, 1) $ Primitive $ -1.10304555596122 + 1.0059215339291120\; i $ $ -0.568308288946734 - 0.953277135441219\; i $ 7(e)
$ (7, 1) $ Primitive $ 0.764464537114743 + 0.2097254339881594\; i $ $ -4.018513045186225 + 0.345332811593217\; i $ 7(f)
$ (2, 2) $ Satellite $ 0.851625771743808 + 0.2369760927165886\; i $ $ -3.752943559023020 + 0.074408072396025\; i $ 7(g)
$ (3, 2) $ Satellite $ 0.875562175989576 + 0.2566238834815281\; i $ $ -3.838763107389483 + 0.152045173864673\; i $ 7(h)
$ (4, 2) $ Satellite $ 1.201354999600545 - 0.2912383604676560\; i $ $ -3.921140825708978 + 0.257336038244326\; i $ 7(i)
$ (q, k) $ Type $ \xi $ $ \lambda $ Fig. No.
$ (2, 1) $ Primitive $ -0.23512621166835 + 1.6020106612492319\; i $ $ -1.951962936703127 -1.7485319734836857\; i $ 7(a)
$ (3, 1) $ Primitive $ 0.454659800907803 + 0\; i $ $ -5.219261654371707 + 0\; i $ 7(b)
$ (4, 1) $ Primitive $ 0.341977833651053 + 0.4814672920477362\; i $ $ -3.564458921821090 + 1.646535885566244\; i $ 7(c)
$ (5, 1) $ Primitive $ 0.757190777481740 + 0.2122872817258981\; i $ $ -4.045956427432157 + 0.346070091333350\; i $ 7(d)
$ (6, 1) $ Primitive $ -1.10304555596122 + 1.0059215339291120\; i $ $ -0.568308288946734 - 0.953277135441219\; i $ 7(e)
$ (7, 1) $ Primitive $ 0.764464537114743 + 0.2097254339881594\; i $ $ -4.018513045186225 + 0.345332811593217\; i $ 7(f)
$ (2, 2) $ Satellite $ 0.851625771743808 + 0.2369760927165886\; i $ $ -3.752943559023020 + 0.074408072396025\; i $ 7(g)
$ (3, 2) $ Satellite $ 0.875562175989576 + 0.2566238834815281\; i $ $ -3.838763107389483 + 0.152045173864673\; i $ 7(h)
$ (4, 2) $ Satellite $ 1.201354999600545 - 0.2912383604676560\; i $ $ -3.921140825708978 + 0.257336038244326\; i $ 7(i)
[1]

Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2020, 16 (1) : 309-324. doi: 10.3934/jimo.2018153

[2]

Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729

[3]

Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851

[4]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[5]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[6]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[7]

Feliz Minhós, João Fialho. On the solvability of some fourth-order equations with functional boundary conditions. Conference Publications, 2009, 2009 (Special) : 564-573. doi: 10.3934/proc.2009.2009.564

[8]

Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463

[9]

Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008

[10]

Craig Cowan. Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter. Communications on Pure & Applied Analysis, 2016, 15 (2) : 519-533. doi: 10.3934/cpaa.2016.15.519

[11]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[12]

Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170

[13]

Zhilin Yang, Jingxian Sun. Positive solutions of a fourth-order boundary value problem involving derivatives of all orders. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1615-1628. doi: 10.3934/cpaa.2012.11.1615

[14]

Maria-Magdalena Boureanu. Fourth-order problems with Leray-Lions type operators in variable exponent spaces. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 231-243. doi: 10.3934/dcdss.2019016

[15]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

[16]

Luca Calatroni, Bertram Düring, Carola-Bibiane Schönlieb. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 931-957. doi: 10.3934/dcds.2014.34.931

[17]

Lili Ju, Xinfeng Liu, Wei Leng. Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1667-1687. doi: 10.3934/dcdsb.2014.19.1667

[18]

Amine Laghrib, Abdelkrim Chakib, Aissam Hadri, Abdelilah Hakim. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 415-442. doi: 10.3934/dcdsb.2019188

[19]

John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269

[20]

John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291-299. doi: 10.3934/proc.2013.2013.291

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (4)
  • HTML views (30)
  • Cited by (0)

Other articles
by authors

[Back to Top]