August  2020, 25(8): 3135-3152. doi: 10.3934/dcdsb.2020054

Attractors for a class of delayed reaction-diffusion equations with dynamic boundary conditions

1. 

Department of Mathematics, Sungkyunkwan University, Suwon, 16419, Korea

2. 

Faculty of Computer Science and Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam

* Corresponding author: Vu Manh Toi

Received  May 2019 Revised  October 2019 Published  February 2020

Fund Project: The first author is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2019R1A6A3A01091340). The second author is supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2018.303

In this paper we study the asymptotic behavior of solutions for a class of nonautonomous reaction-diffusion equations with dynamic boundary conditions possessing finite delay. Under the polynomial conditions of reaction term, suitable conditions of delay terms and a minimal conditions of time-dependent force functions, we first prove the existence and uniqueness of solutions by using the Galerkin method. Then, we ensure the existence of pullback attractors for the associated process to the problem by proving some uniform estimates and asymptotic compactness properties (via an energy method). With an additional condition of time-dependent force functions, we prove that the boundedness of pullback attractors in smoother spaces.

Citation: Jihoon Lee, Vu Manh Toi. Attractors for a class of delayed reaction-diffusion equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3135-3152. doi: 10.3934/dcdsb.2020054
References:
[1]

M. AnguianoP. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618.  doi: 10.1016/j.jmaa.2011.05.046.  Google Scholar

[2]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364.  doi: 10.1080/03605309308820976.  Google Scholar

[3]

Z. H. Fan and C. K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Anal., 68 (2008), 1723-1732.  doi: 10.1016/j.na.2007.01.005.  Google Scholar

[4]

K. FellnerS. SonnerB. Q. Tang and D. D. Thuan, Stabilisation by noise on the boundary for a Chafee-Infante equation with dynamical boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4055-4078.  doi: 10.3934/dcdsb.2019050.  Google Scholar

[5]

J. García-Luengo and P. Marín-Rubio, Reaction-diffusion equations with non-autonomous force in $H^{-1}$ and delays under measurability conditions on the driving delay term, J. Math. Anal. Appl., 417 (2014), 80-95.  doi: 10.1016/j.jmaa.2014.03.026.  Google Scholar

[6]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252 (2012), 4333-4356.  doi: 10.1016/j.jde.2012.01.010.  Google Scholar

[7]

C. G. Gal, Sharp estimates for the global attractor of scalar reaction-diffusion equations with a Wentzell boundary condition, J. Nonlinear Sci., 22 (2012), 85-106.  doi: 10.1007/s00332-011-9109-y.  Google Scholar

[8]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.   Google Scholar

[9]

J. K. Hale, Theory of Functional Differential Equations. Applied Mathematical Sciences, vol. 3. Springer, Berlin, 1977.  Google Scholar

[10]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[11]

H. Harraga and M. Yebdri, Attractors for a nonautonomous reaction-diffusion equation with delay, Appl. Math. Nonlinear Sci., 3 (2018), 127-150.  doi: 10.21042/AMNS.2018.1.00010.  Google Scholar

[12]

T. D. Ke and N. C. Wong, Asymptotic behavior for retarded parabolic equations with superlinear perturbations, J. Optim. Theory Appl., 146 (2010), 117-135.  doi: 10.1007/s10957-010-9665-6.  Google Scholar

[13]

V. B. Kolmanovskii and A. D. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463. Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[14]

R. Samprogna and T. Caraballo, Pullback attractor for a dynamic boundary non-autonomous problem with infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 509-523.  doi: 10.3934/dcdsb.2017195.  Google Scholar

[15]

J. L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive-diffusive type, J. Differential Equations, 250 (2011), 2143-2161.  doi: 10.1016/j.jde.2010.12.012.  Google Scholar

[16]

L. Yang, Uniform attractors for the closed process and applications to the reaction-diffusion equation with dynamical boundary condition, Nonlinear Anal., 71 (2009), 4012-4025.  doi: 10.1016/j.na.2009.02.083.  Google Scholar

[17]

L. Yang and M. Yang, Long-time behavior of reaction-diffusion equations with dynamical boundary condition, Nonlinear Anal., 74 (2011), 3876-3883.  doi: 10.1016/j.na.2011.02.022.  Google Scholar

[18]

L. YangM. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2635-2651.  doi: 10.3934/dcdsb.2012.17.2635.  Google Scholar

show all references

References:
[1]

M. AnguianoP. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618.  doi: 10.1016/j.jmaa.2011.05.046.  Google Scholar

[2]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364.  doi: 10.1080/03605309308820976.  Google Scholar

[3]

Z. H. Fan and C. K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Anal., 68 (2008), 1723-1732.  doi: 10.1016/j.na.2007.01.005.  Google Scholar

[4]

K. FellnerS. SonnerB. Q. Tang and D. D. Thuan, Stabilisation by noise on the boundary for a Chafee-Infante equation with dynamical boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4055-4078.  doi: 10.3934/dcdsb.2019050.  Google Scholar

[5]

J. García-Luengo and P. Marín-Rubio, Reaction-diffusion equations with non-autonomous force in $H^{-1}$ and delays under measurability conditions on the driving delay term, J. Math. Anal. Appl., 417 (2014), 80-95.  doi: 10.1016/j.jmaa.2014.03.026.  Google Scholar

[6]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252 (2012), 4333-4356.  doi: 10.1016/j.jde.2012.01.010.  Google Scholar

[7]

C. G. Gal, Sharp estimates for the global attractor of scalar reaction-diffusion equations with a Wentzell boundary condition, J. Nonlinear Sci., 22 (2012), 85-106.  doi: 10.1007/s00332-011-9109-y.  Google Scholar

[8]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.   Google Scholar

[9]

J. K. Hale, Theory of Functional Differential Equations. Applied Mathematical Sciences, vol. 3. Springer, Berlin, 1977.  Google Scholar

[10]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[11]

H. Harraga and M. Yebdri, Attractors for a nonautonomous reaction-diffusion equation with delay, Appl. Math. Nonlinear Sci., 3 (2018), 127-150.  doi: 10.21042/AMNS.2018.1.00010.  Google Scholar

[12]

T. D. Ke and N. C. Wong, Asymptotic behavior for retarded parabolic equations with superlinear perturbations, J. Optim. Theory Appl., 146 (2010), 117-135.  doi: 10.1007/s10957-010-9665-6.  Google Scholar

[13]

V. B. Kolmanovskii and A. D. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463. Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[14]

R. Samprogna and T. Caraballo, Pullback attractor for a dynamic boundary non-autonomous problem with infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 509-523.  doi: 10.3934/dcdsb.2017195.  Google Scholar

[15]

J. L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive-diffusive type, J. Differential Equations, 250 (2011), 2143-2161.  doi: 10.1016/j.jde.2010.12.012.  Google Scholar

[16]

L. Yang, Uniform attractors for the closed process and applications to the reaction-diffusion equation with dynamical boundary condition, Nonlinear Anal., 71 (2009), 4012-4025.  doi: 10.1016/j.na.2009.02.083.  Google Scholar

[17]

L. Yang and M. Yang, Long-time behavior of reaction-diffusion equations with dynamical boundary condition, Nonlinear Anal., 74 (2011), 3876-3883.  doi: 10.1016/j.na.2011.02.022.  Google Scholar

[18]

L. YangM. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2635-2651.  doi: 10.3934/dcdsb.2012.17.2635.  Google Scholar

[1]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[7]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[8]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[9]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[15]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[20]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (163)
  • HTML views (267)
  • Cited by (0)

Other articles
by authors

[Back to Top]