    August  2020, 25(8): 3153-3170. doi: 10.3934/dcdsb.2020055

## Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise

 1 School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, China 2 Hunan Defense Industry Polytechnic, Xiangtan, Hunan 411207, China 3 Department of Mathematics, Columbus State University, Columbus, Georgia 31907, USA

* Corresponding author: Fuqi Yin

Received  May 2019 Revised  September 2019 Published  February 2020

Fund Project: The corresponding author is supported by The Scientific Research Foundation Funded by Hunan Provincial Education Department under grant 19A503 and 15K127; partially supported by Hunan Provincial Natural Science Foundation of China under grant 2015JJ2144, National Natural Science Foundation of People’s Republic of China under grant 11671343

We mainly consider the existence of a random exponential attractor (positive invariant compact measurable set with finite fractal dimension and attracting orbits exponentially) for stochastic discrete long wave-short wave resonance equation driven by multiplicative white noise. Firstly, we prove the existence of a random attractor of the considered equation by proving the existence of a uniformly tempered pullback absorbing set and making an estimate on the "tails" of solutions. Secondly, we show the Lipschitz property of the solution process generated by the considered equation. Finally, we prove the existence of a random exponential attractor of the considered equation, which implies the finiteness of fractal dimension of random attractor.

Citation: Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055
##### References:
  L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar  P. Bates, K. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.  Google Scholar  H. Cui and S. Zhou, Random attractor for Schr$\mathrm{\ddot{o}}$dinger lattice system with with multiplicative white noise, Journal of Zhejiang Normal University, 40 (2017), 17-23.   Google Scholar  X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Int. J. Math, 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.  Google Scholar  R. H. J. Grimshaw, The modulation of an internal gravity-wave packet and the resonance with the mean motion, Stud Appl Math, 56 (1977), 241-266.  doi: 10.1002/sapm1977563241.  Google Scholar  H. Li, M. Jin, F. Yin and Z. Liu, Structure and continuity properties of global attractor for the Klein-Gordon equation, Natural Science Journal of Xiangtan Universty, 41 (2019), 15-30.   Google Scholar  Y. Liang, Z. Zhu and M. Zhao, Finite fractal dimension of kernel sections for long-wave-short-wave resonance equations on infinite lattices, Acta Mathematica Scientia, 35 (2015), 1146-1157. Google Scholar  A. Shirikyan and S. Zelik, Exponential attractors for random dynamical systems and applications, Stoch. PDE: Anal. Comp, 1 (2013), 241-281.  doi: 10.1007/s40072-013-0007-1.  Google Scholar  F. Yin and X. Li, Fractal dimensions of random attractors for stochastic Benjamin-Bona-Mahony equation on unbounded domains, Computers and Mathematics with Applications, 75 (2018), 1595-1615.  doi: 10.1016/j.camwa.2017.11.025.  Google Scholar  F. Yin and L. Liu, D-pullback attractor for a non-autonomous wave equation with additive noise on unbounded domains, Computers and Mathematics with Applications, 68 (2014), 424-438.  doi: 10.1016/j.camwa.2014.06.018.  Google Scholar  C. Zhao and S. Zhou, Compact kernel sections of long-wave-short-wave resonance equations on infinite lattices, Nonlinear Analysis, 68 (2008), 652-670.  doi: 10.1016/j.na.2006.11.027.  Google Scholar  S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic damped wave equation with multiplicative noise, Discrete Contin.Dyn.Syst, 36 (2016), 2887-2914.  doi: 10.3934/dcds.2016.36.2887.  Google Scholar  X. Zhou, F. Yin and S. Zhou, Uniform exponential attractors for second order non-autonomous lattice dynamical systems, Acta Mathematicae Applicatae Sinica, 33 (2017), 587-606.  doi: 10.1007/s10255-017-0684-z.  Google Scholar  S. Zhou, Random exponential attractors for cocyclethe and application to non-autonomous stochastic lattice systems with multiplicative white noise, Journal of Differential Equations, 263 (2017), 2247-2279.  doi: 10.1016/j.jde.2017.03.044.  Google Scholar  S. Zhou and Z. Wang, Random attractor and random exponential attractor for stochastic nonautonomous damped cubic wave equation with linear multiplicative white noise, Discrete and Continuous Dynamical System, 38 (2018), 4767-4817.  doi: 10.3934/dcds.2018210.  Google Scholar  S. Zhou, Random exponential attractor for stochastic reaction-diffusion equation with multiplicative noise in $R^{3}$, Journal of Differential Equations, 263 (2017), 6347-6383.  doi: 10.1016/j.jde.2017.07.013.  Google Scholar

show all references

##### References:
  L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar  P. Bates, K. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.  Google Scholar  H. Cui and S. Zhou, Random attractor for Schr$\mathrm{\ddot{o}}$dinger lattice system with with multiplicative white noise, Journal of Zhejiang Normal University, 40 (2017), 17-23.   Google Scholar  X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Int. J. Math, 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.  Google Scholar  R. H. J. Grimshaw, The modulation of an internal gravity-wave packet and the resonance with the mean motion, Stud Appl Math, 56 (1977), 241-266.  doi: 10.1002/sapm1977563241.  Google Scholar  H. Li, M. Jin, F. Yin and Z. Liu, Structure and continuity properties of global attractor for the Klein-Gordon equation, Natural Science Journal of Xiangtan Universty, 41 (2019), 15-30.   Google Scholar  Y. Liang, Z. Zhu and M. Zhao, Finite fractal dimension of kernel sections for long-wave-short-wave resonance equations on infinite lattices, Acta Mathematica Scientia, 35 (2015), 1146-1157. Google Scholar  A. Shirikyan and S. Zelik, Exponential attractors for random dynamical systems and applications, Stoch. PDE: Anal. Comp, 1 (2013), 241-281.  doi: 10.1007/s40072-013-0007-1.  Google Scholar  F. Yin and X. Li, Fractal dimensions of random attractors for stochastic Benjamin-Bona-Mahony equation on unbounded domains, Computers and Mathematics with Applications, 75 (2018), 1595-1615.  doi: 10.1016/j.camwa.2017.11.025.  Google Scholar  F. Yin and L. Liu, D-pullback attractor for a non-autonomous wave equation with additive noise on unbounded domains, Computers and Mathematics with Applications, 68 (2014), 424-438.  doi: 10.1016/j.camwa.2014.06.018.  Google Scholar  C. Zhao and S. Zhou, Compact kernel sections of long-wave-short-wave resonance equations on infinite lattices, Nonlinear Analysis, 68 (2008), 652-670.  doi: 10.1016/j.na.2006.11.027.  Google Scholar  S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic damped wave equation with multiplicative noise, Discrete Contin.Dyn.Syst, 36 (2016), 2887-2914.  doi: 10.3934/dcds.2016.36.2887.  Google Scholar  X. Zhou, F. Yin and S. Zhou, Uniform exponential attractors for second order non-autonomous lattice dynamical systems, Acta Mathematicae Applicatae Sinica, 33 (2017), 587-606.  doi: 10.1007/s10255-017-0684-z.  Google Scholar  S. Zhou, Random exponential attractors for cocyclethe and application to non-autonomous stochastic lattice systems with multiplicative white noise, Journal of Differential Equations, 263 (2017), 2247-2279.  doi: 10.1016/j.jde.2017.03.044.  Google Scholar  S. Zhou and Z. Wang, Random attractor and random exponential attractor for stochastic nonautonomous damped cubic wave equation with linear multiplicative white noise, Discrete and Continuous Dynamical System, 38 (2018), 4767-4817.  doi: 10.3934/dcds.2018210.  Google Scholar  S. Zhou, Random exponential attractor for stochastic reaction-diffusion equation with multiplicative noise in $R^{3}$, Journal of Differential Equations, 263 (2017), 6347-6383.  doi: 10.1016/j.jde.2017.07.013.  Google Scholar
  Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318  Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466  Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243  João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138  Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345  Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273  Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456  Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215  Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118  Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319  Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073  Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217  Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336  Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121  Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029  Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080  Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168  Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460  Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122  Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $(n, m)$-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

2019 Impact Factor: 1.27