doi: 10.3934/dcdsb.2020056

Global attraction in a system of delay differential equations via compact and convex sets

Departamento de Estatística, Análise Matemática e Optimización and Instituto de Matemáticas, Universidade de Santiago de Compostela, Facultade de Matemáticas, Campus Vida, 15782 Santiago de Compostela, Spain

Received  May 2019 Published  February 2020

We provide sufficient conditions for a concrete type of systems of delay differential equations (DDEs) to have a global attractor. The principal idea is based on a particular type of global attraction in difference equations in terms of nested, convex and compact sets. We prove that the solutions of the system of DDEs inherit the convergence to the equilibrium from an associated discrete dynamical system.

Citation: Sebastián Buedo-Fernández. Global attraction in a system of delay differential equations via compact and convex sets. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020056
References:
[1]

H. A. El-Morshedy and V. Jiménez López, Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.  doi: 10.1080/10236190701671632.  Google Scholar

[2]

H. A. El-Morshedy and A. Ruiz-Herrera, Geometric methods of global attraction in systems of delay differential equations, J. Differential Equations, 263 (2017), 5968-5986.  doi: 10.1016/j.jde.2017.07.001.  Google Scholar

[3]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[4]

A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, in Dynam. Report. Expositions Dynam. Systems (N.S.) (eds. C. K. R. T. Jones, U. Kirchgraber and H.-O. Walther), Springer, Berlin, 1 (1992), 164–224.  Google Scholar

[5]

E. Liz, Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.  doi: 10.3934/dcdsb.2007.7.191.  Google Scholar

[6]

E. Liz and A. Ruiz-Herrera, Attractivity, multistability, and bifurcation in delayed Hopfield's model with non-monotonic feedback, J. Differential Equations, 255 (2013), 4244-4266.  doi: 10.1016/j.jde.2013.08.007.  Google Scholar

[7]

E. Liz and A. Ruiz-Herrera, Addendum to Attractivity, multistability, and bifurcation in delayed Hopfield's model with non-monotonic feedback" [J. Differential Equations, 255 (2013), 4244{4266], J. Differential Equations, 257 (2014), 1307{1309. doi: 10.1016/j.jde.2014.05.010.  Google Scholar

[8]

E. Liz and A. Ruiz-Herrera, Global dynamics of delay equations for populations with competition among immature individuals, J. Differential Equations, 260 (2016), 5926-5955.  doi: 10.1016/j.jde.2015.12.020.  Google Scholar

[9]

J. Mallet-Paret and R. D. Nussbaum, Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation, Ann. Mat. Pura Appl., 145 (1986), 33-128.  doi: 10.1007/BF01790539.  Google Scholar

[10]

F. A. Valentine, Convex Sets, Robert E. Krieger Publishing Co., New York, 1976.  Google Scholar

[11]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 2955-2973.  doi: 10.1098/rspa.2009.0650.  Google Scholar

show all references

References:
[1]

H. A. El-Morshedy and V. Jiménez López, Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.  doi: 10.1080/10236190701671632.  Google Scholar

[2]

H. A. El-Morshedy and A. Ruiz-Herrera, Geometric methods of global attraction in systems of delay differential equations, J. Differential Equations, 263 (2017), 5968-5986.  doi: 10.1016/j.jde.2017.07.001.  Google Scholar

[3]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[4]

A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, in Dynam. Report. Expositions Dynam. Systems (N.S.) (eds. C. K. R. T. Jones, U. Kirchgraber and H.-O. Walther), Springer, Berlin, 1 (1992), 164–224.  Google Scholar

[5]

E. Liz, Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.  doi: 10.3934/dcdsb.2007.7.191.  Google Scholar

[6]

E. Liz and A. Ruiz-Herrera, Attractivity, multistability, and bifurcation in delayed Hopfield's model with non-monotonic feedback, J. Differential Equations, 255 (2013), 4244-4266.  doi: 10.1016/j.jde.2013.08.007.  Google Scholar

[7]

E. Liz and A. Ruiz-Herrera, Addendum to Attractivity, multistability, and bifurcation in delayed Hopfield's model with non-monotonic feedback" [J. Differential Equations, 255 (2013), 4244{4266], J. Differential Equations, 257 (2014), 1307{1309. doi: 10.1016/j.jde.2014.05.010.  Google Scholar

[8]

E. Liz and A. Ruiz-Herrera, Global dynamics of delay equations for populations with competition among immature individuals, J. Differential Equations, 260 (2016), 5926-5955.  doi: 10.1016/j.jde.2015.12.020.  Google Scholar

[9]

J. Mallet-Paret and R. D. Nussbaum, Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation, Ann. Mat. Pura Appl., 145 (1986), 33-128.  doi: 10.1007/BF01790539.  Google Scholar

[10]

F. A. Valentine, Convex Sets, Robert E. Krieger Publishing Co., New York, 1976.  Google Scholar

[11]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 2955-2973.  doi: 10.1098/rspa.2009.0650.  Google Scholar

Figure 1.  The origin is not a strong attractor
Figure 2.  A possible set $ Q_{x, v, \varepsilon} $ is represented in gray. Distances are pointed out with dashed green lines. A particular $ v^* $ satisfying the hypotheses of the last assertion of Lemma 3.1 is also depicted (color figure online)
Figure 3.  Possible behaviour of $ x(t, \phi) $ (blue). The boundary of the set $ K_2 $ is represented in black. The boundaries of $ K_{2, \mu} $, for some values $ \mu>1 $ are represented in grey. The blue arrow represents $ x'(t, \phi) $, which "points to the interior" of a $ K_{2, \mu} $. $ f(K_2) $ is represented in red. The equilibrium $ z_* $ is depicted as a point inside $ f(K_2) $ (color figure online)
[1]

Sergey Zelik. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 781-810. doi: 10.3934/dcdsb.2015.20.781

[2]

Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005

[3]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Z. Zgurovsky. Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1155-1176. doi: 10.3934/dcdsb.2018146

[4]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[5]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[6]

Kei Matsuura, Mitsuharu Otani. Exponential attractors for a quasilinear parabolic equation. Conference Publications, 2007, 2007 (Special) : 713-720. doi: 10.3934/proc.2007.2007.713

[7]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[8]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[9]

Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1299-1316. doi: 10.3934/dcdsb.2019221

[10]

Björn Birnir, Nils Svanstedt. Existence theory and strong attractors for the Rayleigh-Bénard problem with a large aspect ratio. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 53-74. doi: 10.3934/dcds.2004.10.53

[11]

Messoud Efendiev, Alain Miranville. Finite dimensional attractors for reaction-diffusion equations in $R^n$ with a strong nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 399-424. doi: 10.3934/dcds.1999.5.399

[12]

Kuanysh A. Bekmaganbetov, Gregory A. Chechkin, Vladimir V. Chepyzhov. Strong convergence of trajectory attractors for reaction–diffusion systems with random rapidly oscillating terms. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2419-2443. doi: 10.3934/cpaa.2020106

[13]

Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51

[14]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[15]

Hongyong Cui, Mirelson M. Freitas, José A. Langa. On random cocycle attractors with autonomous attraction universes. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3379-3407. doi: 10.3934/dcdsb.2017142

[16]

Panayotis Panayotaros, Felipe Rivero. Multistability and localized attractors in a dissipative discrete NLS equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1137-1154. doi: 10.3934/dcdsb.2014.19.1137

[17]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[18]

Zhijian Yang, Na Feng, Yanan Li. Robust attractors for a Kirchhoff-Boussinesq type equation. Evolution Equations & Control Theory, 2020, 9 (2) : 469-488. doi: 10.3934/eect.2020020

[19]

Annamaria Barbagallo, Rosalba Di Vincenzo, Stéphane Pia. On strong Lagrange duality for weighted traffic equilibrium problem. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1097-1113. doi: 10.3934/dcds.2011.31.1097

[20]

Mihai Bostan. On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 339-371. doi: 10.3934/dcdsb.2015.20.339

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (46)
  • HTML views (80)
  • Cited by (0)

Other articles
by authors

[Back to Top]