The main objective of this paper is to study the semi-implicit semi-discrete scheme in time of the three dimensional autonomous planetary geostrophic equations of large-scale ocean circulation. We prove the global attractor and stationary statistical properties of the semi-implicit semi-discrete scheme in time of the three dimensional autonomous planetary geostrophic equations of large-scale ocean circulation converge to those of the three dimensional autonomous planetary geostrophic equations of large-scale ocean circulation as the time step goes to zero.
Citation: |
[1] | C. S. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Comm. Pure Appl. Math., 56 (2003), 198-233. doi: 10.1002/cpa.10056. |
[2] | W. Cheng and X. M. Wang, A semi-implicit scheme for stationary statistical properties of the infinite Prandtl number model, SIAM J. Numer. Anal., 47 (2008), 250-270. doi: 10.1137/080713501. |
[3] | W. Cheng and X. M. Wang, A uniformly dissipative scheme for stationary statistical properties of the infinite Prandtl number model, Appl. Math. Lett., 21 (2008), 1281-1285. doi: 10.1016/j.aml.2007.07.036. |
[4] | C. M. Elliott and A. M. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM J. Numer. Anal., 30 (1993), 1622-1663. doi: 10.1137/0730084. |
[5] | C. Foias, M. Jolly, I. Kevrekidis and E. Titi, Dissipativity of numerical schemes, Nonlinearity, 4 (1991), 591-613. doi: 10.1088/0951-7715/4/3/001. |
[6] | C. Foias, M. Jolly, I. Kevrekidis and E. Titi, On some dissipative fully discrete nonlinear Galerkin schemes for the Kuramoto-Sivashinsky equation, Phys. Lett. A, 186 (1994), 87-96. doi: 10.1016/0375-9601(94)90926-1. |
[7] | C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754. |
[8] | A. T. Hill and E. Suli, Approximation of the global attractor for the incompressible Navier-Stokes equations, IMA J. Numer. Anal., 20 (2000), 633-667. doi: 10.1093/imanum/20.4.633. |
[9] | N. Ju, On the global stability of a temporal discretization scheme for the Navier-Stokes equations, IMA J. Numer. Anal., 22 (2002), 577-597. doi: 10.1093/imanum/22.4.577. |
[10] | L. P. Kadanoff, Turbulent heat flow: Structures and scaling, Phys. Today, 54 (2001), 34-39. |
[11] | A. Lasota and M. C. Mackey, Chaos, Fractals and Noise, Stochastic Aspects of Dynamics, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4286-4. |
[12] | A. J. Majda and X. M. Wang, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge University Press, Cambridge, 2006. doi: 10.1017/CBO9780511616778. |
[13] | A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. II., Dover Publications, Inc., Mineola, NY, 2007. |
[14] | J. Pedlosky, The equations for geostrophic motion in the ocean, J. Phys. Oceanogr., 14 (1984), 448-455. |
[15] | J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. |
[16] | N. A. Phillips, Geostrophic motion, Reviews of Geophysics, 1 (1963), 123-176. |
[17] | A. Robinson and H. Stommel, The oceanic thermocline and associated thermohaline circulation, Tellus, 11 (1959), 295-308. |
[18] | R. M. Samelson, R. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation, Appl. Anal., 70 (1998), 147-173. doi: 10.1080/00036819808840682. |
[19] | R. M. Samelson, R. Temam and S. Wang, Remarks on the planetary geostrophic model of gyre scale ocean circulation, Differential Integral Equations, 13 (2000), 1-14. |
[20] | R. M. Samelson and G. K. Vallis, A simple friction and diffusion scheme for planetary geostrophic basin models, J. Phys. Oceanogr., 27 (1997), 186-194. |
[21] | J. Shen, Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations, Numer. Funct. Anal. Optim., 10 (1989), 1213-1234. doi: 10.1080/01630568908816354. |
[22] | J. Shen, Long time stabilities and convergences for the fully discrete nonlinear Galerkin methods, Appl. Anal., 38 (1990), 201-229. doi: 10.1080/00036819008839963. |
[23] | A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, 1996. |
[24] | R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. |
[25] | F. Tone, On the long-time $H^2$-stability of the implicit Euler scheme for the 2D magnetohydrodynamics equations, J. Sci. Comput., 38 (2009), 331-348. doi: 10.1007/s10915-008-9236-2. |
[26] | F. Tone and X. M. Wang, Approximation of the stationary statistical properties of the dynamical system generated by the two dimensional Rayleigh-Bénard convection problem, Anal. Appl., 9 (2011), 421-446. doi: 10.1142/S0219530511001935. |
[27] | F. Tone and D. Wirosoetisno, On the long-time stability of the implicit Euler scheme for the 2D Navier-Stokes equations, SIAM J. Numer. Anal., 44 (2006), 29-40. doi: 10.1137/040618527. |
[28] | M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-009-1423-0. |
[29] | X. M. Wang, Approximating stationary statistical properties, Chin. Ann. Math. Ser. B, 30 (2009), 831-844. doi: 10.1007/s11401-009-0178-2. |
[30] | X. M. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization, Math. Comp., 79 (2010), 259-280. doi: 10.1090/S0025-5718-09-02256-X. |
[31] | X. M. Wang, Numerical algorithms for stationary statistical properties of dissipative dynamical systems, Discrete Contin. Dyn. Syst., 36 (2016), 4599-4618. doi: 10.3934/dcds.2016.36.4599. |
[32] | P. Welander, An advective model of the ocean thermocline, Numerical Algorithms, 11 (1959), 309-318. |
[33] | B. You, Random attractors for the three dimensional stochastical planetary geostrophic equations of large-scale ocean circulation, Stochastics, 89 (2017), 766-785. doi: 10.1080/17442508.2016.1276913. |
[34] | B. You and F. Li, The existence of a pullback attractor for the three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation, Nonlinear Anal., 112 (2015), 118-128. doi: 10.1016/j.na.2014.08.018. |
[35] | B. You and F. Li, Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, Stoch. Anal. Appl., 34 (2016), 278-292. doi: 10.1080/07362994.2015.1126184. |
[36] | B. You, C. K. Zhong and F. Li, Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1213-1226. doi: 10.3934/dcdsb.2014.19.1213. |