In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm so-called Walk on Moving Spheres was already introduced in the Brownian context. The aim is therefore to generalize this numerical approach to the Ornstein-Uhlenbeck process and to describe the efficiency of the method.
Citation: |
Figure 1. A sample of the algorithm for the O.U. exit time with parameters $ \theta = 0.1 $ and $ \sigma = 1 $. We observe the walk on spheres associated with the diffusion process starting at $ x = 5 $ and moving in the interval $ [2,7] $. The algorithm corresponding to $ \epsilon = 0,5 $ is represented by the plain style spheroids whereas the case $ \epsilon = 10^{-3} $ corresponds to the whole sequence of spheroids. In both cases we set $ \gamma = 10^{-6}$
[1] | P. Baldi, L. Caramellino and M. G. Iovino, Pricing general barrier options: A numerical approach using sharp large deviations, Math. Finance, 9 (1999), 293-322. doi: 10.1111/1467-9965.t01-1-00071. |
[2] | I. Binder and M. Braverman, The rate of convergence of the walk on spheres algorithm, Geom. Funct. Anal., 22 (2012), 558-587. doi: 10.1007/s00039-012-0161-z. |
[3] | A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities, Adv. in Appl. Probab., 19 (1987), 784-800. doi: 10.2307/1427102. |
[4] | M. Deaconu and S. Herrmann, Simulation of hitting times for bessel processes with non-integer dimension, Bernoulli, 23 (2017), 3744-3771. doi: 10.3150/16-BEJ866. |
[5] | S. Herrmann and C. Zucca, Exact simulation of the first-passage time of diffusions, J. Sci. Comput., 79 (2019), 1477-1504. doi: 10.1007/s10915-018-00900-3. |
[6] | I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, volume 113 of Graduate Texts in Mathematics, second edition, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2. |
[7] | H. R. Lerche, Boundary Crossing of Brownian Motion, volume 40 of Lecture Notes in Statistics, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-1-4615-6569-7. |
[8] | M. Motoo, Some evaluations for continuous Monte Carlo method by using Brownian hitting process, Ann. Inst. Statist. Math. Tokyo, 11 (1959), 49-54. doi: 10.1007/BF01831723. |
[9] | M. E. Muller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Statist., 27 (1956), 569-589. doi: 10.1214/aoms/1177728169. |
[10] | J. R. Norris, Markov Chains, Cambridge University Press, Cambridge, 1998. |
[11] | D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, third edition, 1999. doi: 10.1007/978-3-662-06400-9. |
[12] | K. K. Sabelfeld and N. A. Simonov, Random Walks on Boundary for Solving PDEs, VSP, Utrecht, 1994. |
[13] | K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems, Springer Series in Computational Physics. Springer-Verlag, Berlin, 1991. |
[14] | L. Sacerdote, O. Telve and C. Zucca, Joint densities of first hitting times of a diffusion process through two time-dependent boundaries, Adv. in Appl. Probab., 46 (2014), 186-202. doi: 10.1239/aap/1396360109. |
A sample of the algorithm for the O.U. exit time with parameters
Histogram of the outcome variable for the O.U. with parameters
Histogram of the approximated first exit time of the interval
Simulation of the O.U. exit time from the interval
Simulation of the O.U. exit time from the interval
Error bound