\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exit problem for Ornstein-Uhlenbeck processes: A random walk approach

  • * Corresponding author: Samuel Herrmann

    * Corresponding author: Samuel Herrmann 
Abstract / Introduction Full Text(HTML) Figure(6) Related Papers Cited by
  • In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm so-called Walk on Moving Spheres was already introduced in the Brownian context. The aim is therefore to generalize this numerical approach to the Ornstein-Uhlenbeck process and to describe the efficiency of the method.

    Mathematics Subject Classification: Primary: 65C05; Secondary: 60J60, 60G40, 60G46.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A sample of the algorithm for the O.U. exit time with parameters $ \theta = 0.1 $ and $ \sigma = 1 $. We observe the walk on spheres associated with the diffusion process starting at $ x = 5 $ and moving in the interval $ [2,7] $. The algorithm corresponding to $ \epsilon = 0,5 $ is represented by the plain style spheroids whereas the case $ \epsilon = 10^{-3} $ corresponds to the whole sequence of spheroids. In both cases we set $ \gamma = 10^{-6}$

    Figure 2.  Histogram of the outcome variable for the O.U. with parameters $ \theta = 0.1 $ and $ \sigma = 1 $ when the stopped diffusion process starts at 5 and involves in the interval [2, 7] with $ \epsilon = 10^{-3} $ and $ \gamma = 10^{-6} $

    Figure 3.  Histogram of the approximated first exit time of the interval $ [a,b] $ using the WOMS algorithm and approximated p.d.f. of the first passage time through the level $ b $ (curve). Here $ X_0 = -3 $, $ \theta = 1 $, $ \sigma = 1 $ and $ [a,b] = [-10,-1]$

    Figure 4.  Simulation of the O.U. exit time from the interval $ [2,7] $. The starting position is $ X_0 = 5 $ and the parameters are given by $ \theta = 0.1 $, $ \sigma = 1 $ and $ \gamma = 10^{-6} $. Histogram of the number of steps observed for $ \epsilon = 10^{-3} $

    Figure 5.  Simulation of the O.U. exit time from the interval $ [2,7] $. The starting position is $ X_0 = 5 $ and the parameters are given by $ \theta = 0.1 $, $ \sigma = 1 $ and $ \gamma = 10^{-6} $. Average number of steps versus $ \epsilon $ (in logarithmic scale)

    Figure 6.  Error bound $ \Xi $ versus $ \epsilon $ for different values of $ \theta $ with $ \sigma = 1 $, $ a = -1 $, $ b = 1 $, $ \gamma = 1 $

  • [1] P. BaldiL. Caramellino and M. G. Iovino, Pricing general barrier options: A numerical approach using sharp large deviations, Math. Finance, 9 (1999), 293-322.  doi: 10.1111/1467-9965.t01-1-00071.
    [2] I. Binder and M. Braverman, The rate of convergence of the walk on spheres algorithm, Geom. Funct. Anal., 22 (2012), 558-587.  doi: 10.1007/s00039-012-0161-z.
    [3] A. BuonocoreA. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities, Adv. in Appl. Probab., 19 (1987), 784-800.  doi: 10.2307/1427102.
    [4] M. Deaconu and S. Herrmann, Simulation of hitting times for bessel processes with non-integer dimension, Bernoulli, 23 (2017), 3744-3771.  doi: 10.3150/16-BEJ866.
    [5] S. Herrmann and C. Zucca, Exact simulation of the first-passage time of diffusions, J. Sci. Comput., 79 (2019), 1477-1504.  doi: 10.1007/s10915-018-00900-3.
    [6] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, volume 113 of Graduate Texts in Mathematics, second edition, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.
    [7] H. R. Lerche, Boundary Crossing of Brownian Motion, volume 40 of Lecture Notes in Statistics, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-1-4615-6569-7.
    [8] M. Motoo, Some evaluations for continuous Monte Carlo method by using Brownian hitting process, Ann. Inst. Statist. Math. Tokyo, 11 (1959), 49-54.  doi: 10.1007/BF01831723.
    [9] M. E. Muller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Statist., 27 (1956), 569-589.  doi: 10.1214/aoms/1177728169.
    [10] J. R. NorrisMarkov Chains, Cambridge University Press, Cambridge, 1998. 
    [11] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, third edition, 1999. doi: 10.1007/978-3-662-06400-9.
    [12] K. K. Sabelfeld and N. A. Simonov, Random Walks on Boundary for Solving PDEs, VSP, Utrecht, 1994.
    [13] K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems, Springer Series in Computational Physics. Springer-Verlag, Berlin, 1991.
    [14] L. SacerdoteO. Telve and C. Zucca, Joint densities of first hitting times of a diffusion process through two time-dependent boundaries, Adv. in Appl. Probab., 46 (2014), 186-202.  doi: 10.1239/aap/1396360109.
  • 加载中

Figures(6)

SHARE

Article Metrics

HTML views(1699) PDF downloads(304) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return