August  2020, 25(8): 3217-3232. doi: 10.3934/dcdsb.2020059

Razumikhin-type theorems on polynomial stability of hybrid stochastic systems with pantograph delay

1. 

School of mathematics and information technology, Jiangsu Second Normal University, Nanjing 210013, China

2. 

Department of Applied Mathematics, Donghua University, Shanghai 201620, China

3. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

* Corresponding author: Liangjian Hu

Received  July 2019 Revised  September 2019 Published  February 2020

Fund Project: The author Wei Mao is supported by the National Natural Science Foundation of China (11401261) and "333 High-level Personnel Training Project" of Jiangsu Province. The author Liangjian Hu is supported by the National Natural Science Foundation of China (11471071). The author Xuerong Mao is supported by the Leverhulme Trust (RF-2015-385), the Royal Society (WM160014, Royal Society Wolfson Research Merit Award), the Royal Society and the Newton Fund (NA160317, Royal Society-Newton Advanced Fellowship), the EPSRC (EP/K503174/1)

The main aim of this paper is to investigate the polynomial stability of hybrid stochastic systems with pantograph delay (HSSwPD). By using the Razumikhin technique and Lyapunov functions, we establish several Razumikhin-type theorems on the $ p $th moment polynomial stability and almost sure polynomial stability for HSSwPD. For linear HSSwPD, sufficient conditions for polynomial stability are presented.

Citation: Wei Mao, Liangjian Hu, Xuerong Mao. Razumikhin-type theorems on polynomial stability of hybrid stochastic systems with pantograph delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3217-3232. doi: 10.3934/dcdsb.2020059
References:
[1]

J. Appleby and E. Buckwar, Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation, Electron. J. Qual. Theo., 2016 (2016), 1-32.   Google Scholar

[2]

C. T. H. Baker and E. Buckwar, Continuous $\theta$-methods for the stochastic pantograph equation, Electron. T. Numer. Anal., 11 (2000), 131-151.   Google Scholar

[3]

W. FeiL. HuX. Mao and M. Shen, Structured robust stability and boundedness of nonlinear hybrid delay systems, SIAM J. Control. Optim., 56 (2018), 2662-2689.  doi: 10.1137/17M1146981.  Google Scholar

[4]

Z. FanM. Song and M. Liu, The $\alpha$th moment stability for the stochastic pantograph equation, J. Comput. Appl. Math, 233 (2009), 109-120.  doi: 10.1016/j.cam.2009.04.024.  Google Scholar

[5]

Z. FanM. Liu and W. Cao, Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equations, J. Math. Anal. Appl., 325 (2007), 1142-1159.  doi: 10.1016/j.jmaa.2006.02.063.  Google Scholar

[6]

P. Guo and C. Li, Almost sure exponential stability of numerical solutions for stochastic pantograph differential equations, J. Math. Anal. Appl., 460 (2018), 411-424.  doi: 10.1016/j.jmaa.2017.10.002.  Google Scholar

[7]

P. Guo and C. Li, Razumikhin-type technique on stability of exact and numerical solutions for the nonlinear stochastic pantograph differential equations, BIT Numer. Math., 59 (2019), 77-96.  doi: 10.1007/s10543-018-0723-z.  Google Scholar

[8]

L. HuX. Mao and L. Zhang, Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations, IEEE Trans. Automa. Control., 58 (2013), 2319-2332.  doi: 10.1109/TAC.2013.2256014.  Google Scholar

[9]

L. Huang and F. Deng, Razumikhin-type theorems on stability of neutral stochastic functional differential equations, IEEE Trans. Automa. Control., 53 (2008), 1718-1723.  doi: 10.1109/TAC.2008.929383.  Google Scholar

[10]

S. JankovicJ. Randjelovic and M. Jovanovic, Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations, J. Math. Anal. Appl., 355 (2009), 811-820.  doi: 10.1016/j.jmaa.2009.02.011.  Google Scholar

[11]

Y. Ji and H. Chizeck, Controllability, stabilizability and continuous-time Markovian jump linear quadratic control, IEEE Trans. Automa. Control., 35 (1990), 777-788.  doi: 10.1109/9.57016.  Google Scholar

[12]

K. Liu and A. Chen, Moment decay rates of solutions of stochastic differential equations, Tohoku Math. J., 53 (2001), 81-93.  doi: 10.2748/tmj/1178207532.  Google Scholar

[13]

M. Milosevic, Existence, uniqueness, almost sure polynomial stability of solution to a class of highly nonlinear pantograph stochastic differential equations and the Euler-Maruyama approximation, Appl. Math. Comput., 237 (2014), 672-685.  doi: 10.1016/j.amc.2014.03.132.  Google Scholar

[14] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006.  doi: 10.1142/p473.  Google Scholar
[15]

X. MaoJ. LamS. Xu and H. Gao, Razumikhin method and exponental stability of hybrid stochastic delay interval systems, J. Math. Anal. Appl., 314 (2006), 45-66.  doi: 10.1016/j.jmaa.2005.03.056.  Google Scholar

[16]

X. MaoA. Matasov and A. B. Piunovskiy, Stochastic differential delay equations with Markovian switching, Bernoulli., 6 (2000), 73-90.  doi: 10.2307/3318634.  Google Scholar

[17]

X. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stoch. Proc. Appl., 65 (1996), 233-250.  doi: 10.1016/S0304-4149(96)00109-3.  Google Scholar

[18]

X. Mao, Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations, SIAM J. Math. Anal., 28 (1997), 389-401.  doi: 10.1137/S0036141095290835.  Google Scholar

[19]

X. Mao, Almost sure polynomial stability for a class of stochastic differential equations, Quart. J. Math. Oxford Ser., 43 (1992), 339-348.  doi: 10.1093/qmath/43.3.339.  Google Scholar

[20]

X. Mao, Polynomial stability for perturbed stochastic differential equations with respect to semimartingales, Stoch. Proc. Appl., 41 (1992), 101-116.  doi: 10.1016/0304-4149(92)90149-K.  Google Scholar

[21]

X. MaoJ. Lam and L. Huang, Stabilisation of hybrid stochastic differential equations by delay feedback control, Syst. Control. Lett., 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[22]

S. Peng and Y. Zhang, Razumikhin-type theorems on pth moment exponential stability of impulsive stochastic delay differential equations, IEEE Trans. Automa. Control., 55 (2010), 1917-1922.  doi: 10.1109/TAC.2010.2049775.  Google Scholar

[23]

G. Pavlovic and S. Jankovic, Razumikhin-type theorems on general decay stability of stochastic functional differential equations with infinite delay, J. Comput. Appl. Math., 236 (2012), 1679-1690.  doi: 10.1016/j.cam.2011.09.045.  Google Scholar

[24]

B. S. Razumikhin, On the stability of systems with a delay, Prikl. Mat. Mekh., 20 (1956), 500-512.   Google Scholar

[25]

L. Shaikhet, Stability of stochastic hereditary systems with Markov switching, Theory. Stoch. Proc., 2 (1996), 180-184.   Google Scholar

[26]

Y. Shen and X. Liao, Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations, Chinese Science Bulletin., 44 (1999), 2225-2228.  doi: 10.1007/BF02885926.  Google Scholar

[27]

M. ShenW. FeiX. Mao and S. Deng, Exponential stability of highly nonlinear neutral pantograph stochastic differential equations, Asian. J. Control., 22 (2020), 1-13.   Google Scholar

[28]

F. WuG. Yin and L. Wang, Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching, Math. Control. Related. Fields., 5 (2015), 697-719.  doi: 10.3934/mcrf.2015.5.697.  Google Scholar

[29]

F. Wu and S. Hu, Razumikhin type theorems on general decay stability and robustness for stochastic functional differential equations, I. J. Robust. Nonlinear. Control., 22 (2012), 763-777.  doi: 10.1002/rnc.1726.  Google Scholar

[30]

X. WuW. Zhang and Y. Tang, pth Moment stability of impulsive stochastic delay differential systems with Markovian switching, Commun. Nonlinear. Sci. Numer. Simulation, 18 (2013), 1870-1879.  doi: 10.1016/j.cnsns.2012.12.001.  Google Scholar

[31]

Y. XiaoM. Song and M. Liu, Convergence and stability of the semi-implicit Euler method with variable step size for a linear stochastic pantograph differential equation, Int. J. Numer. Anal. Model., 8 (2011), 214-225.   Google Scholar

[32]

C. Yuan and X. Mao, Robust stability and controllability of stochastic differential delay equations with Markovian switching, Automatica., 40 (2004), 343-354.  doi: 10.1016/j.automatica.2003.10.012.  Google Scholar

[33]

Q. Zhu, Razumikhin-type theorem for stochastic functional differential equations with lévy noise and markov switching, Int. J. Control., 90 (2017), 1703-1712.  doi: 10.1080/00207179.2016.1219069.  Google Scholar

[34]

S. Zhou and M. Xue, Exponential stability for nonlinear hybrid stochastic pantograph equations and numerical approximation, Acta. Math. Sci., 34 (2014), 1254-1270.  doi: 10.1016/S0252-9602(14)60083-7.  Google Scholar

[35]

T. ZhangH. ChenC. Yuan and T. Caraballo, On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations, Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), 5355-5375.   Google Scholar

show all references

References:
[1]

J. Appleby and E. Buckwar, Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation, Electron. J. Qual. Theo., 2016 (2016), 1-32.   Google Scholar

[2]

C. T. H. Baker and E. Buckwar, Continuous $\theta$-methods for the stochastic pantograph equation, Electron. T. Numer. Anal., 11 (2000), 131-151.   Google Scholar

[3]

W. FeiL. HuX. Mao and M. Shen, Structured robust stability and boundedness of nonlinear hybrid delay systems, SIAM J. Control. Optim., 56 (2018), 2662-2689.  doi: 10.1137/17M1146981.  Google Scholar

[4]

Z. FanM. Song and M. Liu, The $\alpha$th moment stability for the stochastic pantograph equation, J. Comput. Appl. Math, 233 (2009), 109-120.  doi: 10.1016/j.cam.2009.04.024.  Google Scholar

[5]

Z. FanM. Liu and W. Cao, Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equations, J. Math. Anal. Appl., 325 (2007), 1142-1159.  doi: 10.1016/j.jmaa.2006.02.063.  Google Scholar

[6]

P. Guo and C. Li, Almost sure exponential stability of numerical solutions for stochastic pantograph differential equations, J. Math. Anal. Appl., 460 (2018), 411-424.  doi: 10.1016/j.jmaa.2017.10.002.  Google Scholar

[7]

P. Guo and C. Li, Razumikhin-type technique on stability of exact and numerical solutions for the nonlinear stochastic pantograph differential equations, BIT Numer. Math., 59 (2019), 77-96.  doi: 10.1007/s10543-018-0723-z.  Google Scholar

[8]

L. HuX. Mao and L. Zhang, Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations, IEEE Trans. Automa. Control., 58 (2013), 2319-2332.  doi: 10.1109/TAC.2013.2256014.  Google Scholar

[9]

L. Huang and F. Deng, Razumikhin-type theorems on stability of neutral stochastic functional differential equations, IEEE Trans. Automa. Control., 53 (2008), 1718-1723.  doi: 10.1109/TAC.2008.929383.  Google Scholar

[10]

S. JankovicJ. Randjelovic and M. Jovanovic, Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations, J. Math. Anal. Appl., 355 (2009), 811-820.  doi: 10.1016/j.jmaa.2009.02.011.  Google Scholar

[11]

Y. Ji and H. Chizeck, Controllability, stabilizability and continuous-time Markovian jump linear quadratic control, IEEE Trans. Automa. Control., 35 (1990), 777-788.  doi: 10.1109/9.57016.  Google Scholar

[12]

K. Liu and A. Chen, Moment decay rates of solutions of stochastic differential equations, Tohoku Math. J., 53 (2001), 81-93.  doi: 10.2748/tmj/1178207532.  Google Scholar

[13]

M. Milosevic, Existence, uniqueness, almost sure polynomial stability of solution to a class of highly nonlinear pantograph stochastic differential equations and the Euler-Maruyama approximation, Appl. Math. Comput., 237 (2014), 672-685.  doi: 10.1016/j.amc.2014.03.132.  Google Scholar

[14] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006.  doi: 10.1142/p473.  Google Scholar
[15]

X. MaoJ. LamS. Xu and H. Gao, Razumikhin method and exponental stability of hybrid stochastic delay interval systems, J. Math. Anal. Appl., 314 (2006), 45-66.  doi: 10.1016/j.jmaa.2005.03.056.  Google Scholar

[16]

X. MaoA. Matasov and A. B. Piunovskiy, Stochastic differential delay equations with Markovian switching, Bernoulli., 6 (2000), 73-90.  doi: 10.2307/3318634.  Google Scholar

[17]

X. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stoch. Proc. Appl., 65 (1996), 233-250.  doi: 10.1016/S0304-4149(96)00109-3.  Google Scholar

[18]

X. Mao, Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations, SIAM J. Math. Anal., 28 (1997), 389-401.  doi: 10.1137/S0036141095290835.  Google Scholar

[19]

X. Mao, Almost sure polynomial stability for a class of stochastic differential equations, Quart. J. Math. Oxford Ser., 43 (1992), 339-348.  doi: 10.1093/qmath/43.3.339.  Google Scholar

[20]

X. Mao, Polynomial stability for perturbed stochastic differential equations with respect to semimartingales, Stoch. Proc. Appl., 41 (1992), 101-116.  doi: 10.1016/0304-4149(92)90149-K.  Google Scholar

[21]

X. MaoJ. Lam and L. Huang, Stabilisation of hybrid stochastic differential equations by delay feedback control, Syst. Control. Lett., 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[22]

S. Peng and Y. Zhang, Razumikhin-type theorems on pth moment exponential stability of impulsive stochastic delay differential equations, IEEE Trans. Automa. Control., 55 (2010), 1917-1922.  doi: 10.1109/TAC.2010.2049775.  Google Scholar

[23]

G. Pavlovic and S. Jankovic, Razumikhin-type theorems on general decay stability of stochastic functional differential equations with infinite delay, J. Comput. Appl. Math., 236 (2012), 1679-1690.  doi: 10.1016/j.cam.2011.09.045.  Google Scholar

[24]

B. S. Razumikhin, On the stability of systems with a delay, Prikl. Mat. Mekh., 20 (1956), 500-512.   Google Scholar

[25]

L. Shaikhet, Stability of stochastic hereditary systems with Markov switching, Theory. Stoch. Proc., 2 (1996), 180-184.   Google Scholar

[26]

Y. Shen and X. Liao, Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations, Chinese Science Bulletin., 44 (1999), 2225-2228.  doi: 10.1007/BF02885926.  Google Scholar

[27]

M. ShenW. FeiX. Mao and S. Deng, Exponential stability of highly nonlinear neutral pantograph stochastic differential equations, Asian. J. Control., 22 (2020), 1-13.   Google Scholar

[28]

F. WuG. Yin and L. Wang, Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching, Math. Control. Related. Fields., 5 (2015), 697-719.  doi: 10.3934/mcrf.2015.5.697.  Google Scholar

[29]

F. Wu and S. Hu, Razumikhin type theorems on general decay stability and robustness for stochastic functional differential equations, I. J. Robust. Nonlinear. Control., 22 (2012), 763-777.  doi: 10.1002/rnc.1726.  Google Scholar

[30]

X. WuW. Zhang and Y. Tang, pth Moment stability of impulsive stochastic delay differential systems with Markovian switching, Commun. Nonlinear. Sci. Numer. Simulation, 18 (2013), 1870-1879.  doi: 10.1016/j.cnsns.2012.12.001.  Google Scholar

[31]

Y. XiaoM. Song and M. Liu, Convergence and stability of the semi-implicit Euler method with variable step size for a linear stochastic pantograph differential equation, Int. J. Numer. Anal. Model., 8 (2011), 214-225.   Google Scholar

[32]

C. Yuan and X. Mao, Robust stability and controllability of stochastic differential delay equations with Markovian switching, Automatica., 40 (2004), 343-354.  doi: 10.1016/j.automatica.2003.10.012.  Google Scholar

[33]

Q. Zhu, Razumikhin-type theorem for stochastic functional differential equations with lévy noise and markov switching, Int. J. Control., 90 (2017), 1703-1712.  doi: 10.1080/00207179.2016.1219069.  Google Scholar

[34]

S. Zhou and M. Xue, Exponential stability for nonlinear hybrid stochastic pantograph equations and numerical approximation, Acta. Math. Sci., 34 (2014), 1254-1270.  doi: 10.1016/S0252-9602(14)60083-7.  Google Scholar

[35]

T. ZhangH. ChenC. Yuan and T. Caraballo, On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations, Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), 5355-5375.   Google Scholar

[1]

Fuke Wu, George Yin, Le Yi Wang. Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching. Mathematical Control & Related Fields, 2015, 5 (3) : 697-719. doi: 10.3934/mcrf.2015.5.697

[2]

Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885

[3]

Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571

[4]

Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471

[5]

Litan Yan, Wenyi Pei, Zhenzhong Zhang. Exponential stability of SDEs driven by fBm with Markovian switching. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6467-6483. doi: 10.3934/dcds.2019280

[6]

Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 487-515. doi: 10.3934/dcds.2001.7.487

[7]

Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control & Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359

[8]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

[9]

Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 345-360. doi: 10.3934/dcds.2016.36.345

[10]

Cónall Kelly, Alexandra Rodkina. Constrained stability and instability of polynomial difference equations with state-dependent noise. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 913-933. doi: 10.3934/dcdsb.2009.11.913

[11]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[12]

Reza Kamyar, Matthew M. Peet. Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2383-2417. doi: 10.3934/dcdsb.2015.20.2383

[13]

Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3615-3631. doi: 10.3934/dcdsb.2018307

[14]

Jian Chen, Tao Zhang, Ziye Zhang, Chong Lin, Bing Chen. Stability and output feedback control for singular Markovian jump delayed systems. Mathematical Control & Related Fields, 2018, 8 (2) : 475-490. doi: 10.3934/mcrf.2018019

[15]

Wensheng Yin, Jinde Cao. Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020109

[16]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[17]

Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077

[18]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[19]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[20]

Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325

2019 Impact Factor: 1.27

Article outline

[Back to Top]