• Previous Article
    Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation
  • DCDS-B Home
  • This Issue
  • Next Article
    Complicated dynamics of tumor-immune system interaction model with distributed time delay
doi: 10.3934/dcdsb.2020063

Geometric method for global stability of discrete population models

School of Computing & Digital Media, London Metropolitan University, 166–220 Holloway Road, London N7 8DB, UK

* Corresponding author: Zhanyuan Hou

Received  February 2019 Revised  November 2019 Published  January 2020

A class of autonomous discrete dynamical systems as population models for competing species are considered when each nullcline surface is a hyperplane. Criteria are established for global attraction of an interior or a boundary fixed point by a geometric method utilising the relative position of these nullcline planes only, independent of the growth rate function. These criteria are universal for a broad class of systems, so they can be applied directly to some known models appearing in the literature including Ricker competition models, Leslie-Gower models, Atkinson-Allen models, and generalised Atkinson-Allen models. Then global asymptotic stability is obtained by finding the eigenvalues of the Jacobian matrix at the fixed point. An intriguing question is proposed: Can a globally attracting fixed point induce a homoclinic cycle?

Citation: Zhanyuan Hou. Geometric method for global stability of discrete population models. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020063
References:
[1]

S. Ahmad and A. C. Lazer, One Species Extinction in an Autonomous Competitive Model, World Congress of Nonlinear Analysts, de Gruyter, Berlin, 1996, 359–368.  Google Scholar

[2]

L. J. S. Allen, E. J. Allen and D. N. Atkinson, Integrodifference equations applied to plant dispersal, competition, and control, in Differential Equations with Applications to Biology, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999, 15–30. doi: 10.1090/fic/021/02.  Google Scholar

[3]

D. N. Atkinson, Mathematical models for plant competition and dispersal, Master's thesis, Texas Tech University in Lubbock, TX, 1997. Google Scholar

[4]

S. Baigent and Z. Hou, Global stability of discrete-time competitive population models, J. Difference Equ. Appl., 23 (2017), 1378-1396.  doi: 10.1080/10236198.2017.1333116.  Google Scholar

[5]

R. Bouyekhf and L. T. Gruyitch, An alternative approach for stability analysis of discrete time nonlinear dynamical systems, J. Difference Equ. Appl., 24 (2018), 68-81.  doi: 10.1080/10236198.2017.1391239.  Google Scholar

[6]

E. Cabral BalreiraS. Elaydi and R. Luís, Global stability of higher dimensional monotone maps, J. Difference Equ. Appl., 23 (2017), 2037-2071.  doi: 10.1080/10236198.2017.1388375.  Google Scholar

[7]

J. M. CushingS. LevargeN. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, J. Difference Equ. Appl., 10 (2004), 1139-1151.  doi: 10.1080/10236190410001652739.  Google Scholar

[8]

J. E. Franke and A. Yakubu, Mutual exclusion versus coexistence for discrete competitive systems, J. Math. Biol., 30 (1991), 161-168.  doi: 10.1007/BF00160333.  Google Scholar

[9]

J. E. Franke and A. Yakubu, Geometry of exclusion principles in discrete systems, J. Math. Anal. Appl., 168 (1992), 385-400.  doi: 10.1016/0022-247X(92)90167-C.  Google Scholar

[10]

M. GyllenbergJ. JiangL. Niu and P. Yan, On the classification of generalised competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex, Discret. Contin. Dyn. Syst., 38 (2018), 615-650.  doi: 10.3934/dcds.2018027.  Google Scholar

[11]

M. GyllenbergJ. Jiang and L. Niu, A note on global stability of three-dimensional Ricker models, J. Difference Equ. Appl., 25 (2019), 142-150.  doi: 10.1080/10236198.2019.1566459.  Google Scholar

[12]

M. GyllenbergJ. JiangL. Niu and P. Yan, On the dynamics of multi-species Ricker models admitting a carrying simplex, J. Difference Equ. Appl., 25 (2019), 1489-1530.  doi: 10.1080/10236198.2019.1663182.  Google Scholar

[13]

M. W. Hirsch, On existence and uniqueness of the carrying simplex for competitive dynamical systems, J. Biol. Dyn., 2 (2008), 169-179.  doi: 10.1080/17513750801939236.  Google Scholar

[14]

J. HofbauerV. Hutson and W. Jansen, Coexistence for systems generated by difference equations of Lotka-Volterra type, J. Math. Biol., 25 (1987), 553-570.  doi: 10.1007/BF00276199.  Google Scholar

[15]

Z. Hou, Global attractor in autonomous competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 127 (1999), 3633-3642.  doi: 10.1090/S0002-9939-99-05204-1.  Google Scholar

[16]

Z. Hou, Global attractor in competitive Lotka-Volterra systems, Math. Nachr., 282 (2009), 995-1008.  doi: 10.1002/mana.200610785.  Google Scholar

[17]

Z. Hou, Vanishing components in autonomous competitive Lotka-Volterra systems, J. Math. Anal. Appl., 359 (2009), 302-310.  doi: 10.1016/j.jmaa.2009.05.054.  Google Scholar

[18]

Z. Hou, Permanence, global attraction and stability, in Lotka-Volterra and Related Systems, Recent De Gruyter Ser. Math. Life Sci., 2, De Gruyter, Berlin, 2013, 1–62.  Google Scholar

[19]

Z. Hou, Geometric method for global stability and repulsion in Kolmogorov systems, Dyn. Syst., 34 (2019), 456-483.  doi: 10.1080/14689367.2018.1554030.  Google Scholar

[20]

J. JiangJ. Mierczyński and Y. Wang, Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding, J. Difference Equations, 246 (2009), 1623-1672.  doi: 10.1016/j.jde.2008.10.008.  Google Scholar

[21]

J. Jiang and L. Niu, On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points, Discrete Contin. Dyn. Syst., 36 (2016), 217-244.  doi: 10.3934/dcds.2016.36.217.  Google Scholar

[22]

J. Jiang and L. Niu, On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex, J. Math. Biol., 74 (2017), 1223-1261.  doi: 10.1007/s00285-016-1052-y.  Google Scholar

[23]

J. JiangL. Niu and Y. Wang, On heteroclinic cycles of competitive maps via carrying simplices, J. Math. Biol., 72 (2016), 939-972.  doi: 10.1007/s00285-015-0920-1.  Google Scholar

[24]

R. Kon, Convex dominates concave: An exclusion principle in discrete-time Kolmogorov systems, Proc. Amer. Math. Soc., 134 (2006), 3025-3034.  doi: 10.1090/S0002-9939-06-08309-2.  Google Scholar

[25]

J. LaSalle, The stability of dynamical systems, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976. doi: 10.1137/1.9781611970432.  Google Scholar

[26]

F. Montes de Oca and M. L. Zeeman, Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems, J. Math. Anal. Appl., 192 (1995), 360-370.  doi: 10.1006/jmaa.1995.1177.  Google Scholar

[27]

F. Montes de Oca and M. L. Zeeman, Extinction in nonautonomous competitive Lotka-Volterra systems, Proc. Amer. Math. Soc, 124 (1996), 3677-3687.  doi: 10.1090/S0002-9939-96-03355-2.  Google Scholar

[28] A. Pakes and R. Maller, Mathematical Ecology of Plant Species Competition. A Class of Deterministic Models for Binary Mixtures of Plant Genotypes, Cambridge Studies in Mathematical Biology, 10, Cambridge University Press, Cambridge, 1990.  doi: 10.1016/0020-7519(90)90100-2.  Google Scholar
[29]

L. I. W. Roeger, Discrete May-Leonard competition models. II, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 841-860.  doi: 10.3934/dcdsb.2005.5.841.  Google Scholar

[30]

L. I. W. Roeger and L. J. S. Allen, Discrete May-Leonard competition models. I, J. Difference Equ. Appl., 10 (2004), 77-98.  doi: 10.1080/10236190310001603662.  Google Scholar

[31]

A. Ruiz-Herrera, Topological criteria of global attraction with application in population dynamics, Nonlinearity, 25 (2012), 2823-2841.  doi: 10.1088/0951-7715/25/10/2823.  Google Scholar

[32]

A. Ruiz-Herrera, Exclusion and dominance in discrete population models via the carrying simplex, J. Difference Equ. Appl., 19 (2013), 96-113.  doi: 10.1080/10236198.2011.628663.  Google Scholar

[33]

H. L. Smith, Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differential Equations, 64 (1986), 165-194.  doi: 10.1016/0022-0396(86)90086-0.  Google Scholar

[34]

H. L. Smith, Planar competitive and cooperative difference equations, J. Differ. Equations Appl., 3 (1998), 335-357.  doi: 10.1080/10236199708808108.  Google Scholar

[35]

Y. Wang and J. Jiang, The general properties of discrete-time competitive dynamical systems, J. Differential Equations, 176 (2001), 470-493.  doi: 10.1006/jdeq.2001.3989.  Google Scholar

[36]

Y. Wang and J. Jiang, Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems, J. Differential Equations, 186 (2002), 611-632.  doi: 10.1016/S0022-0396(02)00025-6.  Google Scholar

[37]

M. L. Zeeman, Extinction in competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 123 (1995), 87-96.  doi: 10.1090/S0002-9939-1995-1264833-2.  Google Scholar

show all references

References:
[1]

S. Ahmad and A. C. Lazer, One Species Extinction in an Autonomous Competitive Model, World Congress of Nonlinear Analysts, de Gruyter, Berlin, 1996, 359–368.  Google Scholar

[2]

L. J. S. Allen, E. J. Allen and D. N. Atkinson, Integrodifference equations applied to plant dispersal, competition, and control, in Differential Equations with Applications to Biology, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999, 15–30. doi: 10.1090/fic/021/02.  Google Scholar

[3]

D. N. Atkinson, Mathematical models for plant competition and dispersal, Master's thesis, Texas Tech University in Lubbock, TX, 1997. Google Scholar

[4]

S. Baigent and Z. Hou, Global stability of discrete-time competitive population models, J. Difference Equ. Appl., 23 (2017), 1378-1396.  doi: 10.1080/10236198.2017.1333116.  Google Scholar

[5]

R. Bouyekhf and L. T. Gruyitch, An alternative approach for stability analysis of discrete time nonlinear dynamical systems, J. Difference Equ. Appl., 24 (2018), 68-81.  doi: 10.1080/10236198.2017.1391239.  Google Scholar

[6]

E. Cabral BalreiraS. Elaydi and R. Luís, Global stability of higher dimensional monotone maps, J. Difference Equ. Appl., 23 (2017), 2037-2071.  doi: 10.1080/10236198.2017.1388375.  Google Scholar

[7]

J. M. CushingS. LevargeN. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, J. Difference Equ. Appl., 10 (2004), 1139-1151.  doi: 10.1080/10236190410001652739.  Google Scholar

[8]

J. E. Franke and A. Yakubu, Mutual exclusion versus coexistence for discrete competitive systems, J. Math. Biol., 30 (1991), 161-168.  doi: 10.1007/BF00160333.  Google Scholar

[9]

J. E. Franke and A. Yakubu, Geometry of exclusion principles in discrete systems, J. Math. Anal. Appl., 168 (1992), 385-400.  doi: 10.1016/0022-247X(92)90167-C.  Google Scholar

[10]

M. GyllenbergJ. JiangL. Niu and P. Yan, On the classification of generalised competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex, Discret. Contin. Dyn. Syst., 38 (2018), 615-650.  doi: 10.3934/dcds.2018027.  Google Scholar

[11]

M. GyllenbergJ. Jiang and L. Niu, A note on global stability of three-dimensional Ricker models, J. Difference Equ. Appl., 25 (2019), 142-150.  doi: 10.1080/10236198.2019.1566459.  Google Scholar

[12]

M. GyllenbergJ. JiangL. Niu and P. Yan, On the dynamics of multi-species Ricker models admitting a carrying simplex, J. Difference Equ. Appl., 25 (2019), 1489-1530.  doi: 10.1080/10236198.2019.1663182.  Google Scholar

[13]

M. W. Hirsch, On existence and uniqueness of the carrying simplex for competitive dynamical systems, J. Biol. Dyn., 2 (2008), 169-179.  doi: 10.1080/17513750801939236.  Google Scholar

[14]

J. HofbauerV. Hutson and W. Jansen, Coexistence for systems generated by difference equations of Lotka-Volterra type, J. Math. Biol., 25 (1987), 553-570.  doi: 10.1007/BF00276199.  Google Scholar

[15]

Z. Hou, Global attractor in autonomous competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 127 (1999), 3633-3642.  doi: 10.1090/S0002-9939-99-05204-1.  Google Scholar

[16]

Z. Hou, Global attractor in competitive Lotka-Volterra systems, Math. Nachr., 282 (2009), 995-1008.  doi: 10.1002/mana.200610785.  Google Scholar

[17]

Z. Hou, Vanishing components in autonomous competitive Lotka-Volterra systems, J. Math. Anal. Appl., 359 (2009), 302-310.  doi: 10.1016/j.jmaa.2009.05.054.  Google Scholar

[18]

Z. Hou, Permanence, global attraction and stability, in Lotka-Volterra and Related Systems, Recent De Gruyter Ser. Math. Life Sci., 2, De Gruyter, Berlin, 2013, 1–62.  Google Scholar

[19]

Z. Hou, Geometric method for global stability and repulsion in Kolmogorov systems, Dyn. Syst., 34 (2019), 456-483.  doi: 10.1080/14689367.2018.1554030.  Google Scholar

[20]

J. JiangJ. Mierczyński and Y. Wang, Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding, J. Difference Equations, 246 (2009), 1623-1672.  doi: 10.1016/j.jde.2008.10.008.  Google Scholar

[21]

J. Jiang and L. Niu, On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points, Discrete Contin. Dyn. Syst., 36 (2016), 217-244.  doi: 10.3934/dcds.2016.36.217.  Google Scholar

[22]

J. Jiang and L. Niu, On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex, J. Math. Biol., 74 (2017), 1223-1261.  doi: 10.1007/s00285-016-1052-y.  Google Scholar

[23]

J. JiangL. Niu and Y. Wang, On heteroclinic cycles of competitive maps via carrying simplices, J. Math. Biol., 72 (2016), 939-972.  doi: 10.1007/s00285-015-0920-1.  Google Scholar

[24]

R. Kon, Convex dominates concave: An exclusion principle in discrete-time Kolmogorov systems, Proc. Amer. Math. Soc., 134 (2006), 3025-3034.  doi: 10.1090/S0002-9939-06-08309-2.  Google Scholar

[25]

J. LaSalle, The stability of dynamical systems, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976. doi: 10.1137/1.9781611970432.  Google Scholar

[26]

F. Montes de Oca and M. L. Zeeman, Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems, J. Math. Anal. Appl., 192 (1995), 360-370.  doi: 10.1006/jmaa.1995.1177.  Google Scholar

[27]

F. Montes de Oca and M. L. Zeeman, Extinction in nonautonomous competitive Lotka-Volterra systems, Proc. Amer. Math. Soc, 124 (1996), 3677-3687.  doi: 10.1090/S0002-9939-96-03355-2.  Google Scholar

[28] A. Pakes and R. Maller, Mathematical Ecology of Plant Species Competition. A Class of Deterministic Models for Binary Mixtures of Plant Genotypes, Cambridge Studies in Mathematical Biology, 10, Cambridge University Press, Cambridge, 1990.  doi: 10.1016/0020-7519(90)90100-2.  Google Scholar
[29]

L. I. W. Roeger, Discrete May-Leonard competition models. II, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 841-860.  doi: 10.3934/dcdsb.2005.5.841.  Google Scholar

[30]

L. I. W. Roeger and L. J. S. Allen, Discrete May-Leonard competition models. I, J. Difference Equ. Appl., 10 (2004), 77-98.  doi: 10.1080/10236190310001603662.  Google Scholar

[31]

A. Ruiz-Herrera, Topological criteria of global attraction with application in population dynamics, Nonlinearity, 25 (2012), 2823-2841.  doi: 10.1088/0951-7715/25/10/2823.  Google Scholar

[32]

A. Ruiz-Herrera, Exclusion and dominance in discrete population models via the carrying simplex, J. Difference Equ. Appl., 19 (2013), 96-113.  doi: 10.1080/10236198.2011.628663.  Google Scholar

[33]

H. L. Smith, Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differential Equations, 64 (1986), 165-194.  doi: 10.1016/0022-0396(86)90086-0.  Google Scholar

[34]

H. L. Smith, Planar competitive and cooperative difference equations, J. Differ. Equations Appl., 3 (1998), 335-357.  doi: 10.1080/10236199708808108.  Google Scholar

[35]

Y. Wang and J. Jiang, The general properties of discrete-time competitive dynamical systems, J. Differential Equations, 176 (2001), 470-493.  doi: 10.1006/jdeq.2001.3989.  Google Scholar

[36]

Y. Wang and J. Jiang, Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems, J. Differential Equations, 186 (2002), 611-632.  doi: 10.1016/S0022-0396(02)00025-6.  Google Scholar

[37]

M. L. Zeeman, Extinction in competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 123 (1995), 87-96.  doi: 10.1090/S0002-9939-1995-1264833-2.  Google Scholar

Figure 1.  A stability region for $ (\alpha, \beta) $ obtained by Theorems 3.3 and 3.5
Figure 2.  Configuration of $ h([u, v]\cap(\cup_{k\in \{i,j\}}(\Gamma_k\cup\Gamma^-_k))) $ for $ a_{ij} = 0 $, (a) $ a_{ji}>0 $, (b) $ a_{ji} = 0 $
Figure 3.  Configuration of $ h([u, v]\cap(\cup_{k\in \{i,j\}}(\Gamma_k\cup\Gamma^-_k))) $ when $ a_{ij}>0, a_{ji}>0 $ and $ [u, v]\cap\Gamma_j $ is on or below $ \Gamma_i $. (a) $ \Gamma_i = \Gamma_j $, (b) $ u_j\geq 0 $, (c) $ u_j = 0 $
Figure 4.  Configuration of $ h([u, v]\cap(\cup_{k\in \{i,j\}}(\Gamma_k\cup\Gamma^-_k))) $ when there is a fixed point $ x^* $ in the interior of $ [u, v] $
[1]

B. Coll, A. Gasull, R. Prohens. On a criterium of global attraction for discrete dynamical systems. Communications on Pure & Applied Analysis, 2006, 5 (3) : 537-550. doi: 10.3934/cpaa.2006.5.537

[2]

Jacobo Pejsachowicz, Robert Skiba. Topology and homoclinic trajectories of discrete dynamical systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1077-1094. doi: 10.3934/dcdss.2013.6.1077

[3]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[4]

Chen-Chang Peng, Kuan-Ju Chen. Existence of transversal homoclinic orbits in higher dimensional discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1181-1197. doi: 10.3934/dcdsb.2010.14.1181

[5]

Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129

[6]

Lianzhang Bao, Wenxian Shen. Logistic type attraction-repulsion chemotaxis systems with a free boundary or unbounded boundary. I. Asymptotic dynamics in fixed unbounded domain. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 1107-1130. doi: 10.3934/dcds.2020072

[7]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[8]

J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625

[9]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[10]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[11]

Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control & Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359

[12]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

[13]

Stefano Galatolo. Global and local complexity in weakly chaotic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1607-1624. doi: 10.3934/dcds.2003.9.1607

[14]

M. R. S. Kulenović, Orlando Merino. Global bifurcation for discrete competitive systems in the plane. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 133-149. doi: 10.3934/dcdsb.2009.12.133

[15]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[16]

Daniel Franco, Juan Perán, Juan Segura. Stability for one-dimensional discrete dynamical systems revisited. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 635-650. doi: 10.3934/dcdsb.2019258

[17]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257

[18]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[19]

Zhanyuan Hou, Stephen Baigent. Global stability and repulsion in autonomous Kolmogorov systems. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1205-1238. doi: 10.3934/cpaa.2015.14.1205

[20]

Jin Zhang, Peter E. Kloeden, Meihua Yang, Chengkui Zhong. Global exponential κ-dissipative semigroups and exponential attraction. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3487-3502. doi: 10.3934/dcds.2017148

2018 Impact Factor: 1.008

Article outline

Figures and Tables

[Back to Top]