• Previous Article
    A two-group age of infection epidemic model with periodic behavioral changes
  • DCDS-B Home
  • This Issue
  • Next Article
    Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy
doi: 10.3934/dcdsb.2020064

Global existence and asymptotic behavior of solutions to a chemotaxis system with chemicals and prey-predator terms

Depto. de Análisis Matemático y Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain

Received  February 2019 Revised  October 2019 Published  January 2020

Fund Project: The first author is supported by by project MTM2017- 83391-P MICINN (Spain).

This paper is concerned with a general asymptotic stabilization of arbitrary global positive bounded solutions for the Lotka Volterra reaction diffusion systems, with an additional chemotactic influence and constant coefficients. We consider the dynamics of a mathematical model involving two biological species, both of which move according to random diffusion and are attracted/ repulsed by chemical stimulus produced by the other. The biological species present the ability to orientate their movement towards the concentration of the chemical secreted by the other species. The nonlinear system consists of two parabolic equations with Lotka-Volterra-type kinetic terms coupled with chemotactic cross-diffusion, along with two elliptic equations describing the behavior of the chemicals. We prove that the solution to the corresponding Neumann initial boundary value problem is global and bounded for regular and positive initial data. Moreover, for different ranges of parameters, we show that any positive and bounded solution converges to a spatially constant homogeneous state.

Citation: Mihaela Negreanu. Global existence and asymptotic behavior of solutions to a chemotaxis system with chemicals and prey-predator terms. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020064
References:
[1]

S. Ahmad and A. Lazer, Asymptotic behavior of solutions of periodic competition diffusion systems, Nonlinear Anal., 13 (1989), 263-284.  doi: 10.1016/0362-546X(89)90054-0.  Google Scholar

[2]

S. AgmonA. Douglas and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727.  doi: 10.1002/cpa.3160120405.  Google Scholar

[3]

Z. Amine and R. Ortega, A periodic prey-predator system, J. Math. Anal. Appl., 185 (1994), 477-489.  doi: 10.1006/jmaa.1994.1262.  Google Scholar

[4]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[5]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[6]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743.   Google Scholar

[7]

T. Black, Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1253-1272.  doi: 10.3934/dcdsb.2017061.  Google Scholar

[8]

T. BlackJ. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., 81 (2016), 860-876.  doi: 10.1093/imamat/hxw036.  Google Scholar

[9]

C. Cosner and A. C. Lazer, Stable coexistence states in the Volterra-Lotka competition model with diffusion, SIAM J. Appl. Math., 44 (1984), 1112-1132.  doi: 10.1137/0144080.  Google Scholar

[10]

E. Cruz, M. Negreanu and J. I. Tello, Asymptotic behavior and global existence of solutions to a two-species chemotaxis system with two chemicals, Z. Angew. Math. Phys., 69 (2018), 20pp. doi: 10.1007/s00033-018-1002-1.  Google Scholar

[11]

S. M. Fu and M. Ruyun, Existence of a global coexistence state for periodic competition model systems, Nonlinear Anal., 28 (1997), 1265-1271.  doi: 10.1016/S0362-546X(97)82873-8.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin-New York, 1977. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[13]

K. Gopalsamy, Exchange of equilibria in two species Lotka-Volterra competition models, J. Austral. Math. Soc. Ser. B, 24 (1982), 160-170.  doi: 10.1017/S0334270000003659.  Google Scholar

[14]

G. Hetzer and W. Shen, Convergence in almost periodic competition diffusion systems, J. Math. Anal. Appl., 262 (2001), 307-338.  doi: 10.1006/jmaa.2001.7582.  Google Scholar

[15]

G. Hetzer and W. Shen, Uniform persistence, coexistence, and extinction in almost periodic/nonautonomous competition diffusion systems, SIAM J. Math. Anal., 34 (2002), 204-227.  doi: 10.1137/S0036141001390695.  Google Scholar

[16]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[17]

D. Horstmann, Generalizing the Keller–Segel Model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270.  doi: 10.1007/s00332-010-9082-x.  Google Scholar

[18]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[19]

V. HutsonK. Mischaikow and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533.  doi: 10.1007/s002850100106.  Google Scholar

[20]

V. Hutson, K. Mischaikow and P. Poláčik, Elements of Physical Biology, Williams and Wilkins Co., Baltimore, MD. Google Scholar

[21]

T. B. Issa and W. Shen, Uniqueness and stability of coexistence states in two species models with/without chemotaxis on bounded heterogeneous environments, J. Dynam. Differential Equations, 31 (2019), 2305–-2338. doi: 10.1007/s10884-018-9706-7.  Google Scholar

[22]

T. B. Issa and W. Shen, Persistence, coexistence and extinction in two species chemotaxis models on bounded heterogeneous environments, J. Dynam. Differential Equations, 31 (2019), 1839–-1871. doi: 10.1007/s10884-018-9686-7.  Google Scholar

[23]

T. B. Issa and W. Shen, Dynamics in chemotaxis models of parabolic-elliptic type on bounded domain with time and space dependent logistic sources, SIAM J. Appl. Dyn. Syst., 16 (2017), 926-973.  doi: 10.1137/16M1092428.  Google Scholar

[24]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[25]

F. Kentarou and T. Senba, Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148.  doi: 10.1016/j.jde.2017.02.031.  Google Scholar

[26]

H. Li and Y. Tao, Boundedness in a chemotaxis system with indirect signal production and generalized logistic source, Appl. Math. Lett., 77 (2018), 108-113.  doi: 10.1016/j.aml.2017.10.006.  Google Scholar

[27]

M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2301-2319.  doi: 10.3934/dcdsb.2017097.  Google Scholar

[28]

M. Mizukami and T. Yokota, Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion, J. Differential Equations, 261 (2016), 2650-2669.  doi: 10.1016/j.jde.2016.05.008.  Google Scholar

[29]

M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., 46 (2014), 3761-3781.  doi: 10.1137/140971853.  Google Scholar

[30]

M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations, 258 (2015), 1592-1617.  doi: 10.1016/j.jde.2014.11.009.  Google Scholar

[31]

M. Negreanu and J. I. Tello, On a parabolic-elliptic chemotactic system with non-constant chemotactic sensivity, Nonlinear Anal., 80 (2013), 1-13.  doi: 10.1016/j.na.2012.12.004.  Google Scholar

[32]

M. Negreanu and J. I. Tello, On a competitive system under chemotactic effects with non-local terms, Nonlinearity, 26 (2013), 1083-1103.  doi: 10.1088/0951-7715/26/4/1083.  Google Scholar

[33]

M. Negreanu and J. I. Tello, On a comparison method to reaction-diffusion systems and its applications to chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2669-2688.  doi: 10.3934/dcdsb.2013.18.2669.  Google Scholar

[34]

M. Negreanu and J. I. Tello, Global existence and asymptotic behavior of solutions to a predator-prey chemotaxis system with two chemicals, J. Math. Anal. Appl., 474 (2019), 1116-1131.  doi: 10.1016/j.jmaa.2019.02.007.  Google Scholar

[35]

C. V. Pao, Coexistence and statbility of a competition-diffusion system in population dynamics, J. Math. Anal. Appl., 83 (1981), 54-76.  doi: 10.1016/0022-247X(81)90246-8.  Google Scholar

[36]

C. V. Pao, Comparison methods and stability analysis of reaction-diffusion systems, in Comparison Methods and Stability Theory, Lecture Notes in Pure and Appl. Math., 162, Dekker, New York, 1994, 277–292.  Google Scholar

[37]

P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, Birkhauser Advanced Texts, Birkhäuser Verlag, Basel, 2007. doi: 10.1007/978-3-7643-8442-5.  Google Scholar

[38]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.  Google Scholar

[39]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.  Google Scholar

[40]

Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc. (JEMS), 19 (2017), 3641-3678.  doi: 10.4171/JEMS/749.  Google Scholar

[41]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[42]

J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.  doi: 10.1088/0951-7715/25/5/1413.  Google Scholar

[43]

J. I. Tello and D. Wrzosek, Predator prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.  Google Scholar

[44]

A. Tineo, On the asymptotic behavior of some population models, J. Math. Anal. Appl., 167 (1992), 516-529.  doi: 10.1016/0022-247X(92)90222-Y.  Google Scholar

[45]

A. M. Turing, The chemical basis of morphogenesis,, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[46]

V. Volterra, Variazioni e fluttuazioni del numero d individui in specie animali conviventi, Mem. R. Accad. Naz. Dei Lincei., (1926). Google Scholar

[47]

M. Winkler, Finite time blow-up in th higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl. (9), 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[48]

Q. Zhang, Competitive exclusion for a two-species chemotaxis system with two chemicals., Appl. Math. Lett., 83 (2018), 27-32.  doi: 10.1016/j.aml.2018.03.012.  Google Scholar

[49]

Q. Zhang, X. Liu and X. Yang, Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals, J. Math. Phys, 58 (2017), 9pp. doi: 10.1063/1.5011725.  Google Scholar

[50]

P. Zheng, C. Mu and X. Hu, Persistence property in a two-species chemotaxis system with two signals, J. Math. Phys, 58 (2017), 17pp. doi: 10.1063/1.5010681.  Google Scholar

show all references

References:
[1]

S. Ahmad and A. Lazer, Asymptotic behavior of solutions of periodic competition diffusion systems, Nonlinear Anal., 13 (1989), 263-284.  doi: 10.1016/0362-546X(89)90054-0.  Google Scholar

[2]

S. AgmonA. Douglas and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727.  doi: 10.1002/cpa.3160120405.  Google Scholar

[3]

Z. Amine and R. Ortega, A periodic prey-predator system, J. Math. Anal. Appl., 185 (1994), 477-489.  doi: 10.1006/jmaa.1994.1262.  Google Scholar

[4]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[5]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[6]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743.   Google Scholar

[7]

T. Black, Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1253-1272.  doi: 10.3934/dcdsb.2017061.  Google Scholar

[8]

T. BlackJ. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., 81 (2016), 860-876.  doi: 10.1093/imamat/hxw036.  Google Scholar

[9]

C. Cosner and A. C. Lazer, Stable coexistence states in the Volterra-Lotka competition model with diffusion, SIAM J. Appl. Math., 44 (1984), 1112-1132.  doi: 10.1137/0144080.  Google Scholar

[10]

E. Cruz, M. Negreanu and J. I. Tello, Asymptotic behavior and global existence of solutions to a two-species chemotaxis system with two chemicals, Z. Angew. Math. Phys., 69 (2018), 20pp. doi: 10.1007/s00033-018-1002-1.  Google Scholar

[11]

S. M. Fu and M. Ruyun, Existence of a global coexistence state for periodic competition model systems, Nonlinear Anal., 28 (1997), 1265-1271.  doi: 10.1016/S0362-546X(97)82873-8.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin-New York, 1977. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[13]

K. Gopalsamy, Exchange of equilibria in two species Lotka-Volterra competition models, J. Austral. Math. Soc. Ser. B, 24 (1982), 160-170.  doi: 10.1017/S0334270000003659.  Google Scholar

[14]

G. Hetzer and W. Shen, Convergence in almost periodic competition diffusion systems, J. Math. Anal. Appl., 262 (2001), 307-338.  doi: 10.1006/jmaa.2001.7582.  Google Scholar

[15]

G. Hetzer and W. Shen, Uniform persistence, coexistence, and extinction in almost periodic/nonautonomous competition diffusion systems, SIAM J. Math. Anal., 34 (2002), 204-227.  doi: 10.1137/S0036141001390695.  Google Scholar

[16]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[17]

D. Horstmann, Generalizing the Keller–Segel Model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270.  doi: 10.1007/s00332-010-9082-x.  Google Scholar

[18]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[19]

V. HutsonK. Mischaikow and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533.  doi: 10.1007/s002850100106.  Google Scholar

[20]

V. Hutson, K. Mischaikow and P. Poláčik, Elements of Physical Biology, Williams and Wilkins Co., Baltimore, MD. Google Scholar

[21]

T. B. Issa and W. Shen, Uniqueness and stability of coexistence states in two species models with/without chemotaxis on bounded heterogeneous environments, J. Dynam. Differential Equations, 31 (2019), 2305–-2338. doi: 10.1007/s10884-018-9706-7.  Google Scholar

[22]

T. B. Issa and W. Shen, Persistence, coexistence and extinction in two species chemotaxis models on bounded heterogeneous environments, J. Dynam. Differential Equations, 31 (2019), 1839–-1871. doi: 10.1007/s10884-018-9686-7.  Google Scholar

[23]

T. B. Issa and W. Shen, Dynamics in chemotaxis models of parabolic-elliptic type on bounded domain with time and space dependent logistic sources, SIAM J. Appl. Dyn. Syst., 16 (2017), 926-973.  doi: 10.1137/16M1092428.  Google Scholar

[24]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[25]

F. Kentarou and T. Senba, Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148.  doi: 10.1016/j.jde.2017.02.031.  Google Scholar

[26]

H. Li and Y. Tao, Boundedness in a chemotaxis system with indirect signal production and generalized logistic source, Appl. Math. Lett., 77 (2018), 108-113.  doi: 10.1016/j.aml.2017.10.006.  Google Scholar

[27]

M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2301-2319.  doi: 10.3934/dcdsb.2017097.  Google Scholar

[28]

M. Mizukami and T. Yokota, Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion, J. Differential Equations, 261 (2016), 2650-2669.  doi: 10.1016/j.jde.2016.05.008.  Google Scholar

[29]

M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., 46 (2014), 3761-3781.  doi: 10.1137/140971853.  Google Scholar

[30]

M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations, 258 (2015), 1592-1617.  doi: 10.1016/j.jde.2014.11.009.  Google Scholar

[31]

M. Negreanu and J. I. Tello, On a parabolic-elliptic chemotactic system with non-constant chemotactic sensivity, Nonlinear Anal., 80 (2013), 1-13.  doi: 10.1016/j.na.2012.12.004.  Google Scholar

[32]

M. Negreanu and J. I. Tello, On a competitive system under chemotactic effects with non-local terms, Nonlinearity, 26 (2013), 1083-1103.  doi: 10.1088/0951-7715/26/4/1083.  Google Scholar

[33]

M. Negreanu and J. I. Tello, On a comparison method to reaction-diffusion systems and its applications to chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2669-2688.  doi: 10.3934/dcdsb.2013.18.2669.  Google Scholar

[34]

M. Negreanu and J. I. Tello, Global existence and asymptotic behavior of solutions to a predator-prey chemotaxis system with two chemicals, J. Math. Anal. Appl., 474 (2019), 1116-1131.  doi: 10.1016/j.jmaa.2019.02.007.  Google Scholar

[35]

C. V. Pao, Coexistence and statbility of a competition-diffusion system in population dynamics, J. Math. Anal. Appl., 83 (1981), 54-76.  doi: 10.1016/0022-247X(81)90246-8.  Google Scholar

[36]

C. V. Pao, Comparison methods and stability analysis of reaction-diffusion systems, in Comparison Methods and Stability Theory, Lecture Notes in Pure and Appl. Math., 162, Dekker, New York, 1994, 277–292.  Google Scholar

[37]

P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, Birkhauser Advanced Texts, Birkhäuser Verlag, Basel, 2007. doi: 10.1007/978-3-7643-8442-5.  Google Scholar

[38]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.  Google Scholar

[39]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.  Google Scholar

[40]

Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc. (JEMS), 19 (2017), 3641-3678.  doi: 10.4171/JEMS/749.  Google Scholar

[41]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[42]

J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.  doi: 10.1088/0951-7715/25/5/1413.  Google Scholar

[43]

J. I. Tello and D. Wrzosek, Predator prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.  Google Scholar

[44]

A. Tineo, On the asymptotic behavior of some population models, J. Math. Anal. Appl., 167 (1992), 516-529.  doi: 10.1016/0022-247X(92)90222-Y.  Google Scholar

[45]

A. M. Turing, The chemical basis of morphogenesis,, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[46]

V. Volterra, Variazioni e fluttuazioni del numero d individui in specie animali conviventi, Mem. R. Accad. Naz. Dei Lincei., (1926). Google Scholar

[47]

M. Winkler, Finite time blow-up in th higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl. (9), 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[48]

Q. Zhang, Competitive exclusion for a two-species chemotaxis system with two chemicals., Appl. Math. Lett., 83 (2018), 27-32.  doi: 10.1016/j.aml.2018.03.012.  Google Scholar

[49]

Q. Zhang, X. Liu and X. Yang, Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals, J. Math. Phys, 58 (2017), 9pp. doi: 10.1063/1.5011725.  Google Scholar

[50]

P. Zheng, C. Mu and X. Hu, Persistence property in a two-species chemotaxis system with two signals, J. Math. Phys, 58 (2017), 17pp. doi: 10.1063/1.5010681.  Google Scholar

[1]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[2]

Shuxia Pan. Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27: 89-99. doi: 10.3934/era.2019011

[3]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[4]

Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823

[5]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[6]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[7]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[8]

Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699

[9]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[10]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[11]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[12]

Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747

[13]

Francesca Romana Guarguaglini, Corrado Mascia, Roberto Natalini, Magali Ribot. Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 39-76. doi: 10.3934/dcdsb.2009.12.39

[14]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[15]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[16]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[17]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[18]

Tung Nguyen, Nar Rawal. Coexistence and extinction in Time-Periodic Volterra-Lotka type systems with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3799-3816. doi: 10.3934/dcdsb.2018080

[19]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[20]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (26)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]