doi: 10.3934/dcdsb.2020065

Spectral methods for two-dimensional space and time fractional Bloch-Torrey equations

1. 

School of Mathematics and Statistics, Shandong University, Weihai, Shandong 264209, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

3. 

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

4. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

* Corresponding author: Mingji Zhang

Received  May 2019 Revised  November 2019 Published  January 2020

Fund Project: This work was supported the NSF of China (No. 11601278) and MPS Simons Foundation of USA (No. 628308).

In this paper, we consider the numerical approximation of the space and time fractional Bloch-Torrey equations. A fully discrete spectral scheme based on a finite difference method in the time direction and a Galerkin-Legendre spectral method in the space direction is developed. In order to reduce the amount of computation, an alternating direction implicit (ADI) spectral scheme is proposed. Then the stability and convergence analysis are rigorously established. Finally, numerical results are presented to support our theoretical analysis.

Citation: Hong Lu, Ji Li, Mingji Zhang. Spectral methods for two-dimensional space and time fractional Bloch-Torrey equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020065
References:
[1]

A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424-438.  doi: 10.1016/j.jcp.2014.09.031.  Google Scholar

[2]

C. Bernardi and Y. Maday, Spectral methods, in Handbook of Numerical Analysis, 5, North-Holland, Amsterdam, 1997, 209–485. doi: 10.1016/S1570-8659(97)80003-8.  Google Scholar

[3]

W. BuY. TangY. Wu and J. Yang, Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations, J. Comput. Phys., 293 (2015), 264-279.  doi: 10.1016/j.jcp.2014.06.031.  Google Scholar

[4]

A. Bueno-Orovio and K. Burrage, Exact solutions to the fractional time-space Bloch-Torrey equation for magnetic resonance imaging, Commun. Nonlinear Sci. Numer. Simul., 52 (2017), 91-109.  doi: 10.1016/j.cnsns.2017.04.013.  Google Scholar

[5]

V. J. Ervinand and J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in $\mathbb{R}^d$, Numer. Methods Partial Differential Equations, 23 (2007), 256-281.  doi: 10.1002/num.20169.  Google Scholar

[6]

B. I. Henry, T. A. M. Langlands and S. L. Wearne, Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations, Phys. Rev. E, 74 (2006), 15pp. doi: 10.1103/PhysRevE.74.031116.  Google Scholar

[7]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[8]

R. L. MaginO. AbdullahD. Baleanu and X. J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, J. Magn. Reson., 190 (2008), 255-270.  doi: 10.1016/j.jmr.2007.11.007.  Google Scholar

[9]

R. MaginX. Feng and D. Baleanu, Solving the fractional order Bloch equation, Concepts Magn. Reson., Part A, 34A (2009), 16-23.  doi: 10.1002/cmr.a.20129.  Google Scholar

[10]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[11]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[12]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev space, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[13] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[14]

J. P. Roop, Variational Solution of Fractional Advection Dispersion Equations, Ph.D. thesis, Clemson University in Clemson, SC, 2004.  Google Scholar

[15]

J. Shen, Efficient spectral-Galerkin method. I. Direct solvers for second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505.  doi: 10.1137/0915089.  Google Scholar

[16]

J. Shen, T. Tang and L. L. Wang, Spectral Methods. Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 41, Springer, Heidelberg, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[17]

Q. Yu, F. Liu, I. Turner and K. Burrage, Stability and convergence of an implicit numerical method for the space and time fractional Bloch-Torrey equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 18pp. doi: 10.1098/rsta.2012.0150.  Google Scholar

[18]

Q. YuF. LiuI. Turner and K. Burrage, Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D, Cent. Eur. J. Phys., 11 (2013), 646-665.  doi: 10.2478/s11534-013-0220-6.  Google Scholar

[19]

Q. YuF. LiuI. Turner and K. Burrage, A computationally effective alternating direction method for the space and time fractional Bloch-Torrey equation in 3-D, Appl. Math. Comput., 219 (2012), 4082-4095.  doi: 10.1016/j.amc.2012.10.056.  Google Scholar

[20]

Y. ZhaoW. BuX. Zhao and Y. Tang, Galerkin finite element method for two-dimensional space and time fractional Bloch-Torrey equation, J. Comput. Phys., 350 (2017), 117-135.  doi: 10.1016/j.jcp.2017.08.051.  Google Scholar

show all references

References:
[1]

A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424-438.  doi: 10.1016/j.jcp.2014.09.031.  Google Scholar

[2]

C. Bernardi and Y. Maday, Spectral methods, in Handbook of Numerical Analysis, 5, North-Holland, Amsterdam, 1997, 209–485. doi: 10.1016/S1570-8659(97)80003-8.  Google Scholar

[3]

W. BuY. TangY. Wu and J. Yang, Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations, J. Comput. Phys., 293 (2015), 264-279.  doi: 10.1016/j.jcp.2014.06.031.  Google Scholar

[4]

A. Bueno-Orovio and K. Burrage, Exact solutions to the fractional time-space Bloch-Torrey equation for magnetic resonance imaging, Commun. Nonlinear Sci. Numer. Simul., 52 (2017), 91-109.  doi: 10.1016/j.cnsns.2017.04.013.  Google Scholar

[5]

V. J. Ervinand and J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in $\mathbb{R}^d$, Numer. Methods Partial Differential Equations, 23 (2007), 256-281.  doi: 10.1002/num.20169.  Google Scholar

[6]

B. I. Henry, T. A. M. Langlands and S. L. Wearne, Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations, Phys. Rev. E, 74 (2006), 15pp. doi: 10.1103/PhysRevE.74.031116.  Google Scholar

[7]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[8]

R. L. MaginO. AbdullahD. Baleanu and X. J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, J. Magn. Reson., 190 (2008), 255-270.  doi: 10.1016/j.jmr.2007.11.007.  Google Scholar

[9]

R. MaginX. Feng and D. Baleanu, Solving the fractional order Bloch equation, Concepts Magn. Reson., Part A, 34A (2009), 16-23.  doi: 10.1002/cmr.a.20129.  Google Scholar

[10]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[11]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[12]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev space, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[13] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[14]

J. P. Roop, Variational Solution of Fractional Advection Dispersion Equations, Ph.D. thesis, Clemson University in Clemson, SC, 2004.  Google Scholar

[15]

J. Shen, Efficient spectral-Galerkin method. I. Direct solvers for second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505.  doi: 10.1137/0915089.  Google Scholar

[16]

J. Shen, T. Tang and L. L. Wang, Spectral Methods. Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 41, Springer, Heidelberg, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[17]

Q. Yu, F. Liu, I. Turner and K. Burrage, Stability and convergence of an implicit numerical method for the space and time fractional Bloch-Torrey equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 18pp. doi: 10.1098/rsta.2012.0150.  Google Scholar

[18]

Q. YuF. LiuI. Turner and K. Burrage, Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D, Cent. Eur. J. Phys., 11 (2013), 646-665.  doi: 10.2478/s11534-013-0220-6.  Google Scholar

[19]

Q. YuF. LiuI. Turner and K. Burrage, A computationally effective alternating direction method for the space and time fractional Bloch-Torrey equation in 3-D, Appl. Math. Comput., 219 (2012), 4082-4095.  doi: 10.1016/j.amc.2012.10.056.  Google Scholar

[20]

Y. ZhaoW. BuX. Zhao and Y. Tang, Galerkin finite element method for two-dimensional space and time fractional Bloch-Torrey equation, J. Comput. Phys., 350 (2017), 117-135.  doi: 10.1016/j.jcp.2017.08.051.  Google Scholar

Figure 1.  The left graph with $ \alpha = 0.3,\ \beta = 0.6 $ while the right one with $ \alpha = 0.8,\ \beta = 0.75 $ for Example 6.1
Figure 2.  $ \alpha = 0.5,\ \beta = 0.8 $ for Example 6.2
Table 1.  $ L^2 $ errors and convergence rates for Example 6.1
$ \tau $ $ \alpha=0.3\ \beta=0.6 $ Con. rate $ \alpha=0.8\ \beta=0.75 $ Con. rate
1/10 1.4361e-004 2.1596 1.5512e-004 2.0231
1/20 3.2143e-005 2.0832 3.8163e-005 2.0046
1/40 7.5856e-006 2.0480 9.5104e-006 1.9942
1/80 1.8343e-006 1.9814 2.3872e-006 1.9743
1/160 4.6451e-007 1.7299 6.0791e-007 1.8456
1/320 1.4003e-007 - 1.6914e-007 -
$ \tau $ $ \alpha=0.3\ \beta=0.6 $ Con. rate $ \alpha=0.8\ \beta=0.75 $ Con. rate
1/10 1.4361e-004 2.1596 1.5512e-004 2.0231
1/20 3.2143e-005 2.0832 3.8163e-005 2.0046
1/40 7.5856e-006 2.0480 9.5104e-006 1.9942
1/80 1.8343e-006 1.9814 2.3872e-006 1.9743
1/160 4.6451e-007 1.7299 6.0791e-007 1.8456
1/320 1.4003e-007 - 1.6914e-007 -
Table 2.  $ L^2 $ errors and convergence rates for Example 6.2
$ \tau $ $ \alpha=0.3\ \beta=0.6 $ Con. rate $ \alpha=0.8\ \beta=0.75 $ Con. rate
1/10 1.7946e-003 2.1361 1.6438e-003 2.0271
1/20 4.0827e-004 2.0638 4.0329e-004 2.0098
1/40 9.7653e-005 2.0361 1.0014e-005 1.9949
1/80 2.3810e-005 2.0142 2.5123e-005 1.9935
1/160 5.8943e-006 1.9872 6.3092e-006 1.9763
1/320 1.4867e-006 - 1.6034e-006 -
$ \tau $ $ \alpha=0.3\ \beta=0.6 $ Con. rate $ \alpha=0.8\ \beta=0.75 $ Con. rate
1/10 1.7946e-003 2.1361 1.6438e-003 2.0271
1/20 4.0827e-004 2.0638 4.0329e-004 2.0098
1/40 9.7653e-005 2.0361 1.0014e-005 1.9949
1/80 2.3810e-005 2.0142 2.5123e-005 1.9935
1/160 5.8943e-006 1.9872 6.3092e-006 1.9763
1/320 1.4867e-006 - 1.6034e-006 -
[1]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[2]

Russell E. Warren, Stanley J. Osher. Hyperspectral unmixing by the alternating direction method of multipliers. Inverse Problems & Imaging, 2015, 9 (3) : 917-933. doi: 10.3934/ipi.2015.9.917

[3]

Foxiang Liu, Lingling Xu, Yuehong Sun, Deren Han. A proximal alternating direction method for multi-block coupled convex optimization. Journal of Industrial & Management Optimization, 2019, 15 (2) : 723-737. doi: 10.3934/jimo.2018067

[4]

Sohana Jahan. Supervised distance preserving projection using alternating direction method of multipliers. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019029

[5]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[6]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[7]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[8]

Bingsheng He, Xiaoming Yuan. Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 247-260. doi: 10.3934/naco.2013.3.247

[9]

Yue Lu, Ying-En Ge, Li-Wei Zhang. An alternating direction method for solving a class of inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 317-336. doi: 10.3934/jimo.2016.12.317

[10]

Zhongming Wu, Xingju Cai, Deren Han. Linearized block-wise alternating direction method of multipliers for multiple-block convex programming. Journal of Industrial & Management Optimization, 2018, 14 (3) : 833-855. doi: 10.3934/jimo.2017078

[11]

Yuan Shen, Lei Ji. Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step. Journal of Industrial & Management Optimization, 2019, 15 (1) : 159-175. doi: 10.3934/jimo.2018037

[12]

Feng Ma, Jiansheng Shu, Yaxiong Li, Jian Wu. The dual step size of the alternating direction method can be larger than 1.618 when one function is strongly convex. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2020016

[13]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[14]

Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057

[15]

Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204

[16]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[17]

Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797

[18]

Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399

[19]

Shi Jin, Yingda Li. Local sensitivity analysis and spectral convergence of the stochastic Galerkin method for discrete-velocity Boltzmann equations with multi-scales and random inputs. Kinetic & Related Models, 2019, 12 (5) : 969-993. doi: 10.3934/krm.2019037

[20]

Meng Zhao, Aijie Cheng, Hong Wang. A preconditioned fast Hermite finite element method for space-fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3529-3545. doi: 10.3934/dcdsb.2017178

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (39)
  • HTML views (108)
  • Cited by (0)

Other articles
by authors

[Back to Top]