
-
Previous Article
Global and exponential attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer equations
- DCDS-B Home
- This Issue
-
Next Article
Spectral methods for two-dimensional space and time fractional Bloch-Torrey equations
Dynamical behavior of a rotavirus disease model with two strains and homotypic protection
1. | Department of Mathematics, Shaanxi University of Science and Technology, Xi'an 710021, China |
2. | School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
A two-strain rotavirus model with vaccination and homotypic protection is proposed to study the survival of the two strains of rotavirus within the host. Corresponding to the different efficacy of monovalent vaccine against different strains, the vaccination reproduction numbers of the two strains and the reproduction numbers of their mutual invasion are found. Based on the existence and local stability of equilibria, our results suggest that the obtained reproduction numbers determine together the dynamics of the model, and that the two-strain rotavirus dies out as both the numbers is less than unity. The coexistence of two strains, one of which is dominant, is also related to the two reproduction numbers.
References:
[1] |
C. Atchison, B. Lopman and W. J. Edmunds,
Modelling the seasonality of rotavirus disease and the impact of vaccination in England and Wales, Vaccine, 28 (2010), 3118-3126.
doi: 10.1016/j.vaccine.2010.02.060. |
[2] |
R. F. Bishop, G. L. Barnes, E. Cipriani and J. S. Lund,
Clinical immunity after neonatal rotavirus infection — A prospective longitudinal study in young children, New England J. Medicine, 309 (1983), 72-76.
doi: 10.1056/NEJM198307143090203. |
[3] |
P. H. Dennehy, Rotavirus vaccines - An update, Pediatric Infectious Disease J., 17 (2005), 88-92. Google Scholar |
[4] |
E. Kindler, E. Trojnar, G. Heckel, P. H. Otto and R. Johne,
Analysis of rotavirus species diversity and evolution including the newly determined full-length genome sequences of rotavirus F and G, Infection, Genetics Evolution, 14 (2013), 58-67.
doi: 10.1016/j.meegid.2012.11.015. |
[5] |
J. P. LaSalle, The stability of dynamical systems, in Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976. |
[6] |
A. C. Linhares, Y. B. Gabbay, J. D. P. Mascarenhas, R. B. Freitas and G. M. Beards,
Epidemiology of rotavirus subgroups and serotypes in Belem, Brazil: A three-year study, Ann. Inst. Pasteur Virol., 139 (1988), 89-99.
doi: 10.1016/S0769-2617(88)80009-1. |
[7] |
A. C. Linhares, Y. B. Gabbay, R. B. Freitas and E. S. Travassos da Rosa, et al., Longitudinal study of rotavirus infections among children from Belém, Brazil, Epidemiology Infection, 102 (1989), 129–145.
doi: 10.1017/S0950268800029769. |
[8] |
T. Nakagomi and O. Nakagomi,
A critical review on a globally-licensed, live, orally-administrable, monovalent human rotavirus vaccine: Rotarix, Expert Opinion Biol. Therapy, 9 (2009), 1073-1086.
doi: 10.1517/14712590903103787. |
[9] |
O. L. Omondi, C. C. Wang, X. P. Xue and O. G. Lawi,
Modeling the effects of vaccination on rotavirus infection, Adv. Difference Equ., 2015 (2015), 381-392.
doi: 10.1186/s13662-015-0722-1. |
[10] |
U. Parashar,
Global illness and deaths caused by rotavirus disease in children, Emerg. Infect. Dis., 9 (2003), 565-572.
doi: 10.3201/eid0905.020562. |
[11] |
G. M. Ruiz-Palacios, I. Pérez-Schael, F. Raúl Velázquez, H. Abate and M. O'Ryan,
Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis, New England J. Medicine, 354 (2006), 11-22.
doi: 10.1056/NEJMoa052434. |
[12] |
E. Shim, Z. Feng, M. Martcheva and C. Castillo-Chavez,
An age-structured epidemic model of rotavirus with vaccination, J. Math. Biol., 53 (2006), 719-746.
doi: 10.1007/s00285-006-0023-0. |
[13] |
A. Steele and B. Ivanoff, Rotavirus strains circulating in Africa during 1996–1999: Emergence of G9 strains and P[6] strains., Vaccine, 21 (2003), 361-367. Google Scholar |
[14] |
J. E. Tate, M. M. Patel, A. D. Steele and J. R. Gentsch, et al., Global impact of rotavirus vaccines, Expert Rev. Vaccines, 9 (2010), 395–407. Google Scholar |
[15] |
J. E. Tate, A. H. Burton, C. Boschi-Pinto and A. D. Steele, et al., 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: A systematic review and meta-analysis, Lancet Infectious Diseases, 12 (2012), 136–141.
doi: 10.1016/S1473-3099(11)70253-5. |
[16] |
H. R. Thieme,
Convergence results and a Poincaré-Bendixson trichotomy for asymtotically autonomous differential eqluations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[17] |
T. Van Effelterre, M. Soriano-Gabarró, S. Debrus, N. E. Claire and J. Gray,
A mathematical model of the indirect effects of rotavirus vaccination, Epidemiol. Infect., 138 (2010), 884-897.
doi: 10.1017/S0950268809991245. |
[18] |
F. R. Velázquez, D. O. Matson, J. J. Calva and M. L. Guerrero, et al., Rotavirus infections in infants as protection against subsequent infections, New England J. Medicine, 335 (1996), 1022–1028. Google Scholar |
[19] |
T. Vesikari, D. O. Matson, P. Dennehy, P. V. Damme and P. M. Heaton,
Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine, New England J. Medicine, 354 (2006), 23-33.
doi: 10.1056/NEJMoa052664. |
[20] |
L. J. White, M. J. Cox and G. F. Medley,
Cross immunity and vaccination against multiple microparasite strains, Ima J. Math. Appl. Medicine Biol., 15 (1998), 211-233.
doi: 10.1093/imammb/15.3.211. |
[21] |
Y. Yan and W. Wang,
Global stability of a five-dimensional model with immune responses and delay, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 401-416.
doi: 10.3934/dcdsb.2012.17.401. |
[22] |
G. Young, E. Shim and G. B. Ermentrout,
Qualitative effects of monovalent vaccination against rotavirus: A comparison of North America and South America, Bull. Math. Biol., 77 (2015), 1854-1885.
doi: 10.1007/s11538-015-0107-3. |
[23] |
L. Yuan, S.-I. Ishida, S. Honma and J. Patton, et al., Homotypic and heterotypic serum isotype–specific antibody responses to rotavirus nonstructural protein 4 and viral protein (VP) 4, VP6, and VP7 in infants who received selected live oral rotavirus vaccines. J. Infect. Diseases, 189 (2004), 1833–1845.
doi: 10.1086/383416. |
show all references
References:
[1] |
C. Atchison, B. Lopman and W. J. Edmunds,
Modelling the seasonality of rotavirus disease and the impact of vaccination in England and Wales, Vaccine, 28 (2010), 3118-3126.
doi: 10.1016/j.vaccine.2010.02.060. |
[2] |
R. F. Bishop, G. L. Barnes, E. Cipriani and J. S. Lund,
Clinical immunity after neonatal rotavirus infection — A prospective longitudinal study in young children, New England J. Medicine, 309 (1983), 72-76.
doi: 10.1056/NEJM198307143090203. |
[3] |
P. H. Dennehy, Rotavirus vaccines - An update, Pediatric Infectious Disease J., 17 (2005), 88-92. Google Scholar |
[4] |
E. Kindler, E. Trojnar, G. Heckel, P. H. Otto and R. Johne,
Analysis of rotavirus species diversity and evolution including the newly determined full-length genome sequences of rotavirus F and G, Infection, Genetics Evolution, 14 (2013), 58-67.
doi: 10.1016/j.meegid.2012.11.015. |
[5] |
J. P. LaSalle, The stability of dynamical systems, in Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976. |
[6] |
A. C. Linhares, Y. B. Gabbay, J. D. P. Mascarenhas, R. B. Freitas and G. M. Beards,
Epidemiology of rotavirus subgroups and serotypes in Belem, Brazil: A three-year study, Ann. Inst. Pasteur Virol., 139 (1988), 89-99.
doi: 10.1016/S0769-2617(88)80009-1. |
[7] |
A. C. Linhares, Y. B. Gabbay, R. B. Freitas and E. S. Travassos da Rosa, et al., Longitudinal study of rotavirus infections among children from Belém, Brazil, Epidemiology Infection, 102 (1989), 129–145.
doi: 10.1017/S0950268800029769. |
[8] |
T. Nakagomi and O. Nakagomi,
A critical review on a globally-licensed, live, orally-administrable, monovalent human rotavirus vaccine: Rotarix, Expert Opinion Biol. Therapy, 9 (2009), 1073-1086.
doi: 10.1517/14712590903103787. |
[9] |
O. L. Omondi, C. C. Wang, X. P. Xue and O. G. Lawi,
Modeling the effects of vaccination on rotavirus infection, Adv. Difference Equ., 2015 (2015), 381-392.
doi: 10.1186/s13662-015-0722-1. |
[10] |
U. Parashar,
Global illness and deaths caused by rotavirus disease in children, Emerg. Infect. Dis., 9 (2003), 565-572.
doi: 10.3201/eid0905.020562. |
[11] |
G. M. Ruiz-Palacios, I. Pérez-Schael, F. Raúl Velázquez, H. Abate and M. O'Ryan,
Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis, New England J. Medicine, 354 (2006), 11-22.
doi: 10.1056/NEJMoa052434. |
[12] |
E. Shim, Z. Feng, M. Martcheva and C. Castillo-Chavez,
An age-structured epidemic model of rotavirus with vaccination, J. Math. Biol., 53 (2006), 719-746.
doi: 10.1007/s00285-006-0023-0. |
[13] |
A. Steele and B. Ivanoff, Rotavirus strains circulating in Africa during 1996–1999: Emergence of G9 strains and P[6] strains., Vaccine, 21 (2003), 361-367. Google Scholar |
[14] |
J. E. Tate, M. M. Patel, A. D. Steele and J. R. Gentsch, et al., Global impact of rotavirus vaccines, Expert Rev. Vaccines, 9 (2010), 395–407. Google Scholar |
[15] |
J. E. Tate, A. H. Burton, C. Boschi-Pinto and A. D. Steele, et al., 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: A systematic review and meta-analysis, Lancet Infectious Diseases, 12 (2012), 136–141.
doi: 10.1016/S1473-3099(11)70253-5. |
[16] |
H. R. Thieme,
Convergence results and a Poincaré-Bendixson trichotomy for asymtotically autonomous differential eqluations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[17] |
T. Van Effelterre, M. Soriano-Gabarró, S. Debrus, N. E. Claire and J. Gray,
A mathematical model of the indirect effects of rotavirus vaccination, Epidemiol. Infect., 138 (2010), 884-897.
doi: 10.1017/S0950268809991245. |
[18] |
F. R. Velázquez, D. O. Matson, J. J. Calva and M. L. Guerrero, et al., Rotavirus infections in infants as protection against subsequent infections, New England J. Medicine, 335 (1996), 1022–1028. Google Scholar |
[19] |
T. Vesikari, D. O. Matson, P. Dennehy, P. V. Damme and P. M. Heaton,
Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine, New England J. Medicine, 354 (2006), 23-33.
doi: 10.1056/NEJMoa052664. |
[20] |
L. J. White, M. J. Cox and G. F. Medley,
Cross immunity and vaccination against multiple microparasite strains, Ima J. Math. Appl. Medicine Biol., 15 (1998), 211-233.
doi: 10.1093/imammb/15.3.211. |
[21] |
Y. Yan and W. Wang,
Global stability of a five-dimensional model with immune responses and delay, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 401-416.
doi: 10.3934/dcdsb.2012.17.401. |
[22] |
G. Young, E. Shim and G. B. Ermentrout,
Qualitative effects of monovalent vaccination against rotavirus: A comparison of North America and South America, Bull. Math. Biol., 77 (2015), 1854-1885.
doi: 10.1007/s11538-015-0107-3. |
[23] |
L. Yuan, S.-I. Ishida, S. Honma and J. Patton, et al., Homotypic and heterotypic serum isotype–specific antibody responses to rotavirus nonstructural protein 4 and viral protein (VP) 4, VP6, and VP7 in infants who received selected live oral rotavirus vaccines. J. Infect. Diseases, 189 (2004), 1833–1845.
doi: 10.1086/383416. |







[1] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[2] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288 |
[3] |
Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140 |
[4] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[5] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[6] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[7] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[8] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[9] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[10] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[11] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[12] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[13] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[14] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[15] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[16] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[17] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[18] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[19] |
Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117 |
[20] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]