September  2020, 25(9): 3373-3391. doi: 10.3934/dcdsb.2020066

Dynamical behavior of a rotavirus disease model with two strains and homotypic protection

1. 

Department of Mathematics, Shaanxi University of Science and Technology, Xi'an 710021, China

2. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author: Kun Lu

Received  June 2019 Revised  September 2019 Published  April 2020

Fund Project: The first author is supported by Natural Science Foundation of Shaanxi Provincial Department of Education grant 18JK0092, the second author is supported by National Natural Science Foundation of China grant 11571284, and the third author is supported by National Natural Science Foundation of China grant 11971281

A two-strain rotavirus model with vaccination and homotypic protection is proposed to study the survival of the two strains of rotavirus within the host. Corresponding to the different efficacy of monovalent vaccine against different strains, the vaccination reproduction numbers of the two strains and the reproduction numbers of their mutual invasion are found. Based on the existence and local stability of equilibria, our results suggest that the obtained reproduction numbers determine together the dynamics of the model, and that the two-strain rotavirus dies out as both the numbers is less than unity. The coexistence of two strains, one of which is dominant, is also related to the two reproduction numbers.

Citation: Kun Lu, Wendi Wang, Jianquan Li. Dynamical behavior of a rotavirus disease model with two strains and homotypic protection. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3373-3391. doi: 10.3934/dcdsb.2020066
References:
[1]

C. AtchisonB. Lopman and W. J. Edmunds, Modelling the seasonality of rotavirus disease and the impact of vaccination in England and Wales, Vaccine, 28 (2010), 3118-3126.  doi: 10.1016/j.vaccine.2010.02.060.  Google Scholar

[2]

R. F. BishopG. L. BarnesE. Cipriani and J. S. Lund, Clinical immunity after neonatal rotavirus infection — A prospective longitudinal study in young children, New England J. Medicine, 309 (1983), 72-76.  doi: 10.1056/NEJM198307143090203.  Google Scholar

[3]

P. H. Dennehy, Rotavirus vaccines - An update, Pediatric Infectious Disease J., 17 (2005), 88-92.   Google Scholar

[4]

E. KindlerE. TrojnarG. HeckelP. H. Otto and R. Johne, Analysis of rotavirus species diversity and evolution including the newly determined full-length genome sequences of rotavirus F and G, Infection, Genetics Evolution, 14 (2013), 58-67.  doi: 10.1016/j.meegid.2012.11.015.  Google Scholar

[5]

J. P. LaSalle, The stability of dynamical systems, in Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.  Google Scholar

[6]

A. C. LinharesY. B. GabbayJ. D. P. MascarenhasR. B. Freitas and G. M. Beards, Epidemiology of rotavirus subgroups and serotypes in Belem, Brazil: A three-year study, Ann. Inst. Pasteur Virol., 139 (1988), 89-99.  doi: 10.1016/S0769-2617(88)80009-1.  Google Scholar

[7]

A. C. Linhares, Y. B. Gabbay, R. B. Freitas and E. S. Travassos da Rosa, et al., Longitudinal study of rotavirus infections among children from Belém, Brazil, Epidemiology Infection, 102 (1989), 129–145. doi: 10.1017/S0950268800029769.  Google Scholar

[8]

T. Nakagomi and O. Nakagomi, A critical review on a globally-licensed, live, orally-administrable, monovalent human rotavirus vaccine: Rotarix, Expert Opinion Biol. Therapy, 9 (2009), 1073-1086.  doi: 10.1517/14712590903103787.  Google Scholar

[9]

O. L. OmondiC. C. WangX. P. Xue and O. G. Lawi, Modeling the effects of vaccination on rotavirus infection, Adv. Difference Equ., 2015 (2015), 381-392.  doi: 10.1186/s13662-015-0722-1.  Google Scholar

[10]

U. Parashar, Global illness and deaths caused by rotavirus disease in children, Emerg. Infect. Dis., 9 (2003), 565-572.  doi: 10.3201/eid0905.020562.  Google Scholar

[11]

G. M. Ruiz-PalaciosI. Pérez-SchaelF. Raúl VelázquezH. Abate and M. O'Ryan, Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis, New England J. Medicine, 354 (2006), 11-22.  doi: 10.1056/NEJMoa052434.  Google Scholar

[12]

E. ShimZ. FengM. Martcheva and C. Castillo-Chavez, An age-structured epidemic model of rotavirus with vaccination, J. Math. Biol., 53 (2006), 719-746.  doi: 10.1007/s00285-006-0023-0.  Google Scholar

[13]

A. Steele and B. Ivanoff, Rotavirus strains circulating in Africa during 1996–1999: Emergence of G9 strains and P[6] strains., Vaccine, 21 (2003), 361-367.   Google Scholar

[14]

J. E. Tate, M. M. Patel, A. D. Steele and J. R. Gentsch, et al., Global impact of rotavirus vaccines, Expert Rev. Vaccines, 9 (2010), 395–407. Google Scholar

[15]

J. E. Tate, A. H. Burton, C. Boschi-Pinto and A. D. Steele, et al., 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: A systematic review and meta-analysis, Lancet Infectious Diseases, 12 (2012), 136–141. doi: 10.1016/S1473-3099(11)70253-5.  Google Scholar

[16]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymtotically autonomous differential eqluations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.  Google Scholar

[17]

T. Van EffelterreM. Soriano-GabarróS. DebrusN. E. Claire and J. Gray, A mathematical model of the indirect effects of rotavirus vaccination, Epidemiol. Infect., 138 (2010), 884-897.  doi: 10.1017/S0950268809991245.  Google Scholar

[18]

F. R. Velázquez, D. O. Matson, J. J. Calva and M. L. Guerrero, et al., Rotavirus infections in infants as protection against subsequent infections, New England J. Medicine, 335 (1996), 1022–1028. Google Scholar

[19]

T. VesikariD. O. MatsonP. DennehyP. V. Damme and P. M. Heaton, Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine, New England J. Medicine, 354 (2006), 23-33.  doi: 10.1056/NEJMoa052664.  Google Scholar

[20]

L. J. WhiteM. J. Cox and G. F. Medley, Cross immunity and vaccination against multiple microparasite strains, Ima J. Math. Appl. Medicine Biol., 15 (1998), 211-233.  doi: 10.1093/imammb/15.3.211.  Google Scholar

[21]

Y. Yan and W. Wang, Global stability of a five-dimensional model with immune responses and delay, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 401-416.  doi: 10.3934/dcdsb.2012.17.401.  Google Scholar

[22]

G. YoungE. Shim and G. B. Ermentrout, Qualitative effects of monovalent vaccination against rotavirus: A comparison of North America and South America, Bull. Math. Biol., 77 (2015), 1854-1885.  doi: 10.1007/s11538-015-0107-3.  Google Scholar

[23]

L. Yuan, S.-I. Ishida, S. Honma and J. Patton, et al., Homotypic and heterotypic serum isotype–specific antibody responses to rotavirus nonstructural protein 4 and viral protein (VP) 4, VP6, and VP7 in infants who received selected live oral rotavirus vaccines. J. Infect. Diseases, 189 (2004), 1833–1845. doi: 10.1086/383416.  Google Scholar

show all references

References:
[1]

C. AtchisonB. Lopman and W. J. Edmunds, Modelling the seasonality of rotavirus disease and the impact of vaccination in England and Wales, Vaccine, 28 (2010), 3118-3126.  doi: 10.1016/j.vaccine.2010.02.060.  Google Scholar

[2]

R. F. BishopG. L. BarnesE. Cipriani and J. S. Lund, Clinical immunity after neonatal rotavirus infection — A prospective longitudinal study in young children, New England J. Medicine, 309 (1983), 72-76.  doi: 10.1056/NEJM198307143090203.  Google Scholar

[3]

P. H. Dennehy, Rotavirus vaccines - An update, Pediatric Infectious Disease J., 17 (2005), 88-92.   Google Scholar

[4]

E. KindlerE. TrojnarG. HeckelP. H. Otto and R. Johne, Analysis of rotavirus species diversity and evolution including the newly determined full-length genome sequences of rotavirus F and G, Infection, Genetics Evolution, 14 (2013), 58-67.  doi: 10.1016/j.meegid.2012.11.015.  Google Scholar

[5]

J. P. LaSalle, The stability of dynamical systems, in Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.  Google Scholar

[6]

A. C. LinharesY. B. GabbayJ. D. P. MascarenhasR. B. Freitas and G. M. Beards, Epidemiology of rotavirus subgroups and serotypes in Belem, Brazil: A three-year study, Ann. Inst. Pasteur Virol., 139 (1988), 89-99.  doi: 10.1016/S0769-2617(88)80009-1.  Google Scholar

[7]

A. C. Linhares, Y. B. Gabbay, R. B. Freitas and E. S. Travassos da Rosa, et al., Longitudinal study of rotavirus infections among children from Belém, Brazil, Epidemiology Infection, 102 (1989), 129–145. doi: 10.1017/S0950268800029769.  Google Scholar

[8]

T. Nakagomi and O. Nakagomi, A critical review on a globally-licensed, live, orally-administrable, monovalent human rotavirus vaccine: Rotarix, Expert Opinion Biol. Therapy, 9 (2009), 1073-1086.  doi: 10.1517/14712590903103787.  Google Scholar

[9]

O. L. OmondiC. C. WangX. P. Xue and O. G. Lawi, Modeling the effects of vaccination on rotavirus infection, Adv. Difference Equ., 2015 (2015), 381-392.  doi: 10.1186/s13662-015-0722-1.  Google Scholar

[10]

U. Parashar, Global illness and deaths caused by rotavirus disease in children, Emerg. Infect. Dis., 9 (2003), 565-572.  doi: 10.3201/eid0905.020562.  Google Scholar

[11]

G. M. Ruiz-PalaciosI. Pérez-SchaelF. Raúl VelázquezH. Abate and M. O'Ryan, Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis, New England J. Medicine, 354 (2006), 11-22.  doi: 10.1056/NEJMoa052434.  Google Scholar

[12]

E. ShimZ. FengM. Martcheva and C. Castillo-Chavez, An age-structured epidemic model of rotavirus with vaccination, J. Math. Biol., 53 (2006), 719-746.  doi: 10.1007/s00285-006-0023-0.  Google Scholar

[13]

A. Steele and B. Ivanoff, Rotavirus strains circulating in Africa during 1996–1999: Emergence of G9 strains and P[6] strains., Vaccine, 21 (2003), 361-367.   Google Scholar

[14]

J. E. Tate, M. M. Patel, A. D. Steele and J. R. Gentsch, et al., Global impact of rotavirus vaccines, Expert Rev. Vaccines, 9 (2010), 395–407. Google Scholar

[15]

J. E. Tate, A. H. Burton, C. Boschi-Pinto and A. D. Steele, et al., 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: A systematic review and meta-analysis, Lancet Infectious Diseases, 12 (2012), 136–141. doi: 10.1016/S1473-3099(11)70253-5.  Google Scholar

[16]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymtotically autonomous differential eqluations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.  Google Scholar

[17]

T. Van EffelterreM. Soriano-GabarróS. DebrusN. E. Claire and J. Gray, A mathematical model of the indirect effects of rotavirus vaccination, Epidemiol. Infect., 138 (2010), 884-897.  doi: 10.1017/S0950268809991245.  Google Scholar

[18]

F. R. Velázquez, D. O. Matson, J. J. Calva and M. L. Guerrero, et al., Rotavirus infections in infants as protection against subsequent infections, New England J. Medicine, 335 (1996), 1022–1028. Google Scholar

[19]

T. VesikariD. O. MatsonP. DennehyP. V. Damme and P. M. Heaton, Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine, New England J. Medicine, 354 (2006), 23-33.  doi: 10.1056/NEJMoa052664.  Google Scholar

[20]

L. J. WhiteM. J. Cox and G. F. Medley, Cross immunity and vaccination against multiple microparasite strains, Ima J. Math. Appl. Medicine Biol., 15 (1998), 211-233.  doi: 10.1093/imammb/15.3.211.  Google Scholar

[21]

Y. Yan and W. Wang, Global stability of a five-dimensional model with immune responses and delay, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 401-416.  doi: 10.3934/dcdsb.2012.17.401.  Google Scholar

[22]

G. YoungE. Shim and G. B. Ermentrout, Qualitative effects of monovalent vaccination against rotavirus: A comparison of North America and South America, Bull. Math. Biol., 77 (2015), 1854-1885.  doi: 10.1007/s11538-015-0107-3.  Google Scholar

[23]

L. Yuan, S.-I. Ishida, S. Honma and J. Patton, et al., Homotypic and heterotypic serum isotype–specific antibody responses to rotavirus nonstructural protein 4 and viral protein (VP) 4, VP6, and VP7 in infants who received selected live oral rotavirus vaccines. J. Infect. Diseases, 189 (2004), 1833–1845. doi: 10.1086/383416.  Google Scholar

Figure 1.  Progression of infection from the breast-fed infants $ X $ through the susceptible $ S $, the vaccinated $ V $, the infected $ I_1 $, $ I_2 $ and recovered $ R_1 $, $ R_2 $ for the compartments of the model
Figure 2.  The existence of equilibria of system (2)
Figure 3.  The local stability of the boundary equilibria of system (2), where LAS denotes locally asymptotically stable, $ R_{20} = R_{20}^{(2)} $ is equivalent to $ R_{12} = 1 $, $ R_{20} = R_{20}^{(1)} $ is equivalent to $ R_{21} = 1 $
Figure 4.  The trajectories of $ I_1 $ and $ I_2 $ for the case that $ R_{10}\geq 1 $ and $ R_{20}>R_{20}^{(2)} $. Here, $ \beta_1 = 0.075 $ and $ \beta_2 = 0.2 $. Correspondingly, $ R_{10} = 1.66 $, $ R_{20} = 4.54 $, $ R_{20}^{(2)} = 1.64 $, $ E_2 $ is globally stable
Figure 5.  The trajectories of $ I_1 $ and $ I_2 $ for the case that $ R_{10}> 1 $ and $ R_{20}<1 $. Here, $ \beta_1 = 0.08 $ and $ \beta_2 = 0.04 $. Correspondingly, $ R_{10} = 1.77 $, $ R_{20} = 0.68 $, $ E_1 $ is globally stable
Figure 6.  The trajectories of $ I_1 $ and $ I_2 $ for the case that $ R_{10}>1 $ and $ 1<R_{20}<R_{20}^{(2)} $. Here, $ \beta_1 = 2 $ and $ \beta_2 = 0.2 $. Correspondingly, $ R_{10} = 44.28 $, $ R_{20} = 4.54 $, $ R_{20}^{(1)} = 5.26 $, $ E_1 $ is globally stable
Figure 7.  The trajectories of $ I_1 $ and $ I_2 $ for the case that $ R_{10}>1 $ and $ R_{20}^{(1)}<R_{20}<R_{20}^{(2)} $. Here, $ \beta_1 = 0.8 $ and $ \beta_2 = 0.4 $. Correspondingly, $ R_{10} = 17.71 $, $ R_{20} = 9.08 $, $ R_{20}^{(1)} = 4.58 $, $ R_{20}^{(2)} = 13.62 $, $ E^* $ is globally stable
[1]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[2]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288

[3]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[4]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[5]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[6]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[7]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[9]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[10]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[11]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[12]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[13]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[14]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[17]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[18]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[19]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[20]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (149)
  • HTML views (174)
  • Cited by (0)

Other articles
by authors

[Back to Top]