• Previous Article
    Stability of stochastic heroin model with two distributed delays
  • DCDS-B Home
  • This Issue
  • Next Article
    Long-term orbit dynamics viewed through the yellow main component in the parameter space of a family of optimal fourth-order multiple-root finders
doi: 10.3934/dcdsb.2020066

Dynamical behavior of a rotavirus disease model with two strains and homotypic protection

1. 

Department of Mathematics, Shaanxi University of Science and Technology, Xi'an 710021, China

2. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author: Kun Lu

Received  June 2019 Revised  September 2019 Published  January 2020

Fund Project: The first author is supported by Natural Science Foundation of Shaanxi Provincial Department of Education grant 18JK0092, the second author is supported by National Natural Science Foundation of China grant 11571284, and the third author is supported by National Natural Science Foundation of China grant 11971281.

A two-strain rotavirus model with vaccination and homotypic protection is proposed to study the survival of the two strains of rotavirus within the host. Corresponding to the different efficacy of monovalent vaccine against different strains, the vaccination reproduction numbers of the two strains and the reproduction numbers of their mutual invasion are found. Based on the existence and local stability of equilibria, our results suggest that the obtained reproduction numbers determine together the dynamics of the model, and that the two-strain rotavirus dies out as both the numbers is less than unity. The coexistence of two strains, one of which is dominant, is also related to the two reproduction numbers.

Citation: Kun Lu, Wendi Wang, Jianquan Li. Dynamical behavior of a rotavirus disease model with two strains and homotypic protection. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020066
References:
[1]

C. AtchisonB. Lopman and W. J. Edmunds, Modelling the seasonality of rotavirus disease and the impact of vaccination in England and Wales, Vaccine, 28 (2010), 3118-3126.  doi: 10.1016/j.vaccine.2010.02.060.  Google Scholar

[2]

R. F. BishopG. L. BarnesE. Cipriani and J. S. Lund, Clinical immunity after neonatal rotavirus infection — A prospective longitudinal study in young children, New England J. Medicine, 309 (1983), 72-76.  doi: 10.1056/NEJM198307143090203.  Google Scholar

[3]

P. H. Dennehy, Rotavirus vaccines - An update, Pediatric Infectious Disease J., 17 (2005), 88-92.   Google Scholar

[4]

E. KindlerE. TrojnarG. HeckelP. H. Otto and R. Johne, Analysis of rotavirus species diversity and evolution including the newly determined full-length genome sequences of rotavirus F and G, Infection, Genetics Evolution, 14 (2013), 58-67.  doi: 10.1016/j.meegid.2012.11.015.  Google Scholar

[5]

J. P. LaSalle, The stability of dynamical systems, in Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.  Google Scholar

[6]

A. C. LinharesY. B. GabbayJ. D. P. MascarenhasR. B. Freitas and G. M. Beards, Epidemiology of rotavirus subgroups and serotypes in Belem, Brazil: A three-year study, Ann. Inst. Pasteur Virol., 139 (1988), 89-99.  doi: 10.1016/S0769-2617(88)80009-1.  Google Scholar

[7]

A. C. Linhares, Y. B. Gabbay, R. B. Freitas and E. S. Travassos da Rosa, et al., Longitudinal study of rotavirus infections among children from Belém, Brazil, Epidemiology Infection, 102 (1989), 129–145. doi: 10.1017/S0950268800029769.  Google Scholar

[8]

T. Nakagomi and O. Nakagomi, A critical review on a globally-licensed, live, orally-administrable, monovalent human rotavirus vaccine: Rotarix, Expert Opinion Biol. Therapy, 9 (2009), 1073-1086.  doi: 10.1517/14712590903103787.  Google Scholar

[9]

O. L. OmondiC. C. WangX. P. Xue and O. G. Lawi, Modeling the effects of vaccination on rotavirus infection, Adv. Difference Equ., 2015 (2015), 381-392.  doi: 10.1186/s13662-015-0722-1.  Google Scholar

[10]

U. Parashar, Global illness and deaths caused by rotavirus disease in children, Emerg. Infect. Dis., 9 (2003), 565-572.  doi: 10.3201/eid0905.020562.  Google Scholar

[11]

G. M. Ruiz-PalaciosI. Pérez-SchaelF. Raúl VelázquezH. Abate and M. O'Ryan, Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis, New England J. Medicine, 354 (2006), 11-22.  doi: 10.1056/NEJMoa052434.  Google Scholar

[12]

E. ShimZ. FengM. Martcheva and C. Castillo-Chavez, An age-structured epidemic model of rotavirus with vaccination, J. Math. Biol., 53 (2006), 719-746.  doi: 10.1007/s00285-006-0023-0.  Google Scholar

[13]

A. Steele and B. Ivanoff, Rotavirus strains circulating in Africa during 1996–1999: Emergence of G9 strains and P[6] strains., Vaccine, 21 (2003), 361-367.   Google Scholar

[14]

J. E. Tate, M. M. Patel, A. D. Steele and J. R. Gentsch, et al., Global impact of rotavirus vaccines, Expert Rev. Vaccines, 9 (2010), 395–407. Google Scholar

[15]

J. E. Tate, A. H. Burton, C. Boschi-Pinto and A. D. Steele, et al., 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: A systematic review and meta-analysis, Lancet Infectious Diseases, 12 (2012), 136–141. doi: 10.1016/S1473-3099(11)70253-5.  Google Scholar

[16]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymtotically autonomous differential eqluations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.  Google Scholar

[17]

T. Van EffelterreM. Soriano-GabarróS. DebrusN. E. Claire and J. Gray, A mathematical model of the indirect effects of rotavirus vaccination, Epidemiol. Infect., 138 (2010), 884-897.  doi: 10.1017/S0950268809991245.  Google Scholar

[18]

F. R. Velázquez, D. O. Matson, J. J. Calva and M. L. Guerrero, et al., Rotavirus infections in infants as protection against subsequent infections, New England J. Medicine, 335 (1996), 1022–1028. Google Scholar

[19]

T. VesikariD. O. MatsonP. DennehyP. V. Damme and P. M. Heaton, Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine, New England J. Medicine, 354 (2006), 23-33.  doi: 10.1056/NEJMoa052664.  Google Scholar

[20]

L. J. WhiteM. J. Cox and G. F. Medley, Cross immunity and vaccination against multiple microparasite strains, Ima J. Math. Appl. Medicine Biol., 15 (1998), 211-233.  doi: 10.1093/imammb/15.3.211.  Google Scholar

[21]

Y. Yan and W. Wang, Global stability of a five-dimensional model with immune responses and delay, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 401-416.  doi: 10.3934/dcdsb.2012.17.401.  Google Scholar

[22]

G. YoungE. Shim and G. B. Ermentrout, Qualitative effects of monovalent vaccination against rotavirus: A comparison of North America and South America, Bull. Math. Biol., 77 (2015), 1854-1885.  doi: 10.1007/s11538-015-0107-3.  Google Scholar

[23]

L. Yuan, S.-I. Ishida, S. Honma and J. Patton, et al., Homotypic and heterotypic serum isotype–specific antibody responses to rotavirus nonstructural protein 4 and viral protein (VP) 4, VP6, and VP7 in infants who received selected live oral rotavirus vaccines. J. Infect. Diseases, 189 (2004), 1833–1845. doi: 10.1086/383416.  Google Scholar

show all references

References:
[1]

C. AtchisonB. Lopman and W. J. Edmunds, Modelling the seasonality of rotavirus disease and the impact of vaccination in England and Wales, Vaccine, 28 (2010), 3118-3126.  doi: 10.1016/j.vaccine.2010.02.060.  Google Scholar

[2]

R. F. BishopG. L. BarnesE. Cipriani and J. S. Lund, Clinical immunity after neonatal rotavirus infection — A prospective longitudinal study in young children, New England J. Medicine, 309 (1983), 72-76.  doi: 10.1056/NEJM198307143090203.  Google Scholar

[3]

P. H. Dennehy, Rotavirus vaccines - An update, Pediatric Infectious Disease J., 17 (2005), 88-92.   Google Scholar

[4]

E. KindlerE. TrojnarG. HeckelP. H. Otto and R. Johne, Analysis of rotavirus species diversity and evolution including the newly determined full-length genome sequences of rotavirus F and G, Infection, Genetics Evolution, 14 (2013), 58-67.  doi: 10.1016/j.meegid.2012.11.015.  Google Scholar

[5]

J. P. LaSalle, The stability of dynamical systems, in Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.  Google Scholar

[6]

A. C. LinharesY. B. GabbayJ. D. P. MascarenhasR. B. Freitas and G. M. Beards, Epidemiology of rotavirus subgroups and serotypes in Belem, Brazil: A three-year study, Ann. Inst. Pasteur Virol., 139 (1988), 89-99.  doi: 10.1016/S0769-2617(88)80009-1.  Google Scholar

[7]

A. C. Linhares, Y. B. Gabbay, R. B. Freitas and E. S. Travassos da Rosa, et al., Longitudinal study of rotavirus infections among children from Belém, Brazil, Epidemiology Infection, 102 (1989), 129–145. doi: 10.1017/S0950268800029769.  Google Scholar

[8]

T. Nakagomi and O. Nakagomi, A critical review on a globally-licensed, live, orally-administrable, monovalent human rotavirus vaccine: Rotarix, Expert Opinion Biol. Therapy, 9 (2009), 1073-1086.  doi: 10.1517/14712590903103787.  Google Scholar

[9]

O. L. OmondiC. C. WangX. P. Xue and O. G. Lawi, Modeling the effects of vaccination on rotavirus infection, Adv. Difference Equ., 2015 (2015), 381-392.  doi: 10.1186/s13662-015-0722-1.  Google Scholar

[10]

U. Parashar, Global illness and deaths caused by rotavirus disease in children, Emerg. Infect. Dis., 9 (2003), 565-572.  doi: 10.3201/eid0905.020562.  Google Scholar

[11]

G. M. Ruiz-PalaciosI. Pérez-SchaelF. Raúl VelázquezH. Abate and M. O'Ryan, Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis, New England J. Medicine, 354 (2006), 11-22.  doi: 10.1056/NEJMoa052434.  Google Scholar

[12]

E. ShimZ. FengM. Martcheva and C. Castillo-Chavez, An age-structured epidemic model of rotavirus with vaccination, J. Math. Biol., 53 (2006), 719-746.  doi: 10.1007/s00285-006-0023-0.  Google Scholar

[13]

A. Steele and B. Ivanoff, Rotavirus strains circulating in Africa during 1996–1999: Emergence of G9 strains and P[6] strains., Vaccine, 21 (2003), 361-367.   Google Scholar

[14]

J. E. Tate, M. M. Patel, A. D. Steele and J. R. Gentsch, et al., Global impact of rotavirus vaccines, Expert Rev. Vaccines, 9 (2010), 395–407. Google Scholar

[15]

J. E. Tate, A. H. Burton, C. Boschi-Pinto and A. D. Steele, et al., 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: A systematic review and meta-analysis, Lancet Infectious Diseases, 12 (2012), 136–141. doi: 10.1016/S1473-3099(11)70253-5.  Google Scholar

[16]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymtotically autonomous differential eqluations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.  Google Scholar

[17]

T. Van EffelterreM. Soriano-GabarróS. DebrusN. E. Claire and J. Gray, A mathematical model of the indirect effects of rotavirus vaccination, Epidemiol. Infect., 138 (2010), 884-897.  doi: 10.1017/S0950268809991245.  Google Scholar

[18]

F. R. Velázquez, D. O. Matson, J. J. Calva and M. L. Guerrero, et al., Rotavirus infections in infants as protection against subsequent infections, New England J. Medicine, 335 (1996), 1022–1028. Google Scholar

[19]

T. VesikariD. O. MatsonP. DennehyP. V. Damme and P. M. Heaton, Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine, New England J. Medicine, 354 (2006), 23-33.  doi: 10.1056/NEJMoa052664.  Google Scholar

[20]

L. J. WhiteM. J. Cox and G. F. Medley, Cross immunity and vaccination against multiple microparasite strains, Ima J. Math. Appl. Medicine Biol., 15 (1998), 211-233.  doi: 10.1093/imammb/15.3.211.  Google Scholar

[21]

Y. Yan and W. Wang, Global stability of a five-dimensional model with immune responses and delay, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 401-416.  doi: 10.3934/dcdsb.2012.17.401.  Google Scholar

[22]

G. YoungE. Shim and G. B. Ermentrout, Qualitative effects of monovalent vaccination against rotavirus: A comparison of North America and South America, Bull. Math. Biol., 77 (2015), 1854-1885.  doi: 10.1007/s11538-015-0107-3.  Google Scholar

[23]

L. Yuan, S.-I. Ishida, S. Honma and J. Patton, et al., Homotypic and heterotypic serum isotype–specific antibody responses to rotavirus nonstructural protein 4 and viral protein (VP) 4, VP6, and VP7 in infants who received selected live oral rotavirus vaccines. J. Infect. Diseases, 189 (2004), 1833–1845. doi: 10.1086/383416.  Google Scholar

Figure 1.  Progression of infection from the breast-fed infants $ X $ through the susceptible $ S $, the vaccinated $ V $, the infected $ I_1 $, $ I_2 $ and recovered $ R_1 $, $ R_2 $ for the compartments of the model
Figure 2.  The existence of equilibria of system (2)
Figure 3.  The local stability of the boundary equilibria of system (2), where LAS denotes locally asymptotically stable, $ R_{20} = R_{20}^{(2)} $ is equivalent to $ R_{12} = 1 $, $ R_{20} = R_{20}^{(1)} $ is equivalent to $ R_{21} = 1 $
Figure 4.  The trajectories of $ I_1 $ and $ I_2 $ for the case that $ R_{10}\geq 1 $ and $ R_{20}>R_{20}^{(2)} $. Here, $ \beta_1 = 0.075 $ and $ \beta_2 = 0.2 $. Correspondingly, $ R_{10} = 1.66 $, $ R_{20} = 4.54 $, $ R_{20}^{(2)} = 1.64 $, $ E_2 $ is globally stable
Figure 5.  The trajectories of $ I_1 $ and $ I_2 $ for the case that $ R_{10}> 1 $ and $ R_{20}<1 $. Here, $ \beta_1 = 0.08 $ and $ \beta_2 = 0.04 $. Correspondingly, $ R_{10} = 1.77 $, $ R_{20} = 0.68 $, $ E_1 $ is globally stable
Figure 6.  The trajectories of $ I_1 $ and $ I_2 $ for the case that $ R_{10}>1 $ and $ 1<R_{20}<R_{20}^{(2)} $. Here, $ \beta_1 = 2 $ and $ \beta_2 = 0.2 $. Correspondingly, $ R_{10} = 44.28 $, $ R_{20} = 4.54 $, $ R_{20}^{(1)} = 5.26 $, $ E_1 $ is globally stable
Figure 7.  The trajectories of $ I_1 $ and $ I_2 $ for the case that $ R_{10}>1 $ and $ R_{20}^{(1)}<R_{20}<R_{20}^{(2)} $. Here, $ \beta_1 = 0.8 $ and $ \beta_2 = 0.4 $. Correspondingly, $ R_{10} = 17.71 $, $ R_{20} = 9.08 $, $ R_{20}^{(1)} = 4.58 $, $ R_{20}^{(2)} = 13.62 $, $ E^* $ is globally stable
[1]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[2]

Maia Martcheva, Mimmo Iannelli, Xue-Zhi Li. Subthreshold coexistence of strains: the impact of vaccination and mutation. Mathematical Biosciences & Engineering, 2007, 4 (2) : 287-317. doi: 10.3934/mbe.2007.4.287

[3]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[4]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[5]

Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699

[6]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[7]

Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457

[8]

Guohong Zhang, Xiaoli Wang. Extinction and coexistence of species for a diffusive intraguild predation model with B-D functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3755-3786. doi: 10.3934/dcdsb.2018076

[9]

Tung Nguyen, Nar Rawal. Coexistence and extinction in Time-Periodic Volterra-Lotka type systems with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3799-3816. doi: 10.3934/dcdsb.2018080

[10]

Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng. Stability analysis on an economic epidemiological model with vaccination. Mathematical Biosciences & Engineering, 2017, 14 (4) : 975-999. doi: 10.3934/mbe.2017051

[11]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[12]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[13]

Anna Ghazaryan, Christopher K. R. T. Jones. On the stability of high Lewis number combustion fronts. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 809-826. doi: 10.3934/dcds.2009.24.809

[14]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[15]

Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635

[16]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[17]

Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009

[18]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[19]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[20]

Sabri Bensid, Jesús Ildefonso Díaz. On the exact number of monotone solutions of a simplified Budyko climate model and their different stability. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1033-1047. doi: 10.3934/dcdsb.2019005

2018 Impact Factor: 1.008

Article outline

Figures and Tables

[Back to Top]