We consider an initial-boundary value problem for the incompressible four-component Keller-Segel-Navier-Stokes system with rotational flux
$ \begin{align} \left\{ \begin{array}{l} n_t+u\cdot\nabla n = \Delta n-\nabla\cdot(nS(x,n,c)\nabla c)-nm,\quad x\in \Omega, t>0,\\ c_t+u\cdot\nabla c = \Delta c-c+m,\quad x\in \Omega, t>0,\\ m_t+u\cdot\nabla m = \Delta m-nm,\quad x\in \Omega, t>0, \qquad \qquad \qquad \qquad \qquad \qquad (*)\\ u_t+\kappa(u \cdot \nabla)u+\nabla P = \Delta u+(n+m)\nabla \phi,\quad x\in \Omega, t>0,\\ \nabla\cdot u = 0,\quad x\in \Omega, t>0\\ \end{array}\right. \end{align} $
in a bounded domain $ \Omega\subset \mathbb{R}^3 $ with smooth boundary, where $ \kappa\in \mathbb{R} $ is given constant, $ S $ is a matrix-valued sensitivity satisfying $ |S(x,n,c)|\leq C_S(1+n)^{-\alpha} $ with some $ C_S> 0 $ and $ \alpha\geq 0 $. As the case $ \kappa = 0 $ (with $ \alpha\geq\frac{1}{3} $ or the initial data satisfy a certain smallness condition) has been considered in [
Citation: |
[1] |
N. Bellomo, A. Belloquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
[2] |
X. Cao, Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., 412 (2014), 181-188.
doi: 10.1016/j.jmaa.2013.10.061.![]() ![]() ![]() |
[3] |
M. Chae, K. Kang and J. Lee, Global existence and temporal decay in Keller–Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39 (2014), 1205-1235.
doi: 10.1080/03605302.2013.852224.![]() ![]() ![]() |
[4] |
R. Duan, A. Lorz and P. A. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35 (2010), 1635-1673.
doi: 10.1080/03605302.2010.497199.![]() ![]() ![]() |
[5] |
E. E. Espejo and T. Suzuki, Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal. Real World Appl., 21 (2015), 110-126.
doi: 10.1016/j.nonrwa.2014.07.001.![]() ![]() ![]() |
[6] |
E. E. Espejo and M. Winkler, Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization, Nonlinearity, 31 (2018), 1227-1259.
doi: 10.1088/1361-6544/aa9d5f.![]() ![]() ![]() |
[7] |
Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier–Stokes system, J. Differential Equations, 61 (1986), 186-212.
doi: 10.1016/0022-0396(86)90096-3.![]() ![]() ![]() |
[8] |
J. Gu and F. Meng, Some new nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales, Appl. Math. Comput., 245 (2014), 235-242.
doi: 10.1016/j.amc.2014.07.056.![]() ![]() ![]() |
[9] |
P. He, Y. Wang and L. Zhao, A further study on a 3D chemotaxis-Stokes system with tensor-valued sensitivity, Appl. Math. Lett., 90 (2019), 23-29.
doi: 10.1016/j.aml.2018.09.019.![]() ![]() ![]() |
[10] |
T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3.![]() ![]() ![]() |
[11] |
D. Horstmann, From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.
![]() ![]() |
[12] |
S. Ishida, Global existence and boundedness for chemotaxis–Navier–Stokes system with position-dependent sensitivity in 2D bounded domains, Discrete Contin. Dyn. Syst., 32 (2015), 3463-3482.
doi: 10.3934/dcds.2015.35.3463.![]() ![]() ![]() |
[13] |
S. Ishida, K. Seki and T Yokota, Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.
doi: 10.1016/j.jde.2014.01.028.![]() ![]() ![]() |
[14] |
Y. Ke and J. Zheng, An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Differential Equations, 58 (2019), 27pp.
doi: 10.1007/s00526-019-1568-2.![]() ![]() ![]() |
[15] |
E. Keller and L. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6.![]() ![]() |
[16] |
A. Kiselev and L. Ryzhik, Biomixing by chemotaxis and enhancement of biological reactions, Comm. Partial Differential Equations, 37 (2012), 298-318.
doi: 10.1080/03605302.2011.589879.![]() ![]() ![]() |
[17] |
A. Kiselev and L. Ryzhik, Biomixing by chemotaxis and efficiency of biological reactions: The critical reaction case, J. Math. Phys., 53 (2012), 9pp.
doi: 10.1063/1.4742858.![]() ![]() ![]() |
[18] |
J. Li, P. Pang and Y. Wang, Global boundedness and decay property of a three-dimensional Keller–Segel–Stokes system modeling coral fertilization, Nonlinearity, 32 (2019), 2815-2847.
doi: 10.1088/1361-6544/ab159b.![]() ![]() ![]() |
[19] |
Y. Li and Y. Li, Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species, Nonlinear Anal., 109 (2014), 72-84.
doi: 10.1016/j.na.2014.05.021.![]() ![]() ![]() |
[20] |
X. Li, Y. Wang and Z. Xiang, Global existence and boundedness in a 2D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux, Commun. Math. Sci., 14 (2016), 1889-1910.
doi: 10.4310/CMS.2016.v14.n7.a5.![]() ![]() ![]() |
[21] |
J.-G. Liu and A. Lorz, A coupled chemotaxis–fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.
doi: 10.1016/j.anihpc.2011.04.005.![]() ![]() ![]() |
[22] |
J. Liu and Y. Wang, Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation, J. Differential Equations, 262 (2017), 5271-5305.
doi: 10.1016/j.jde.2017.01.024.![]() ![]() ![]() |
[23] |
A. Lorz, Coupled chemotaxis fluid equations, Math. Models Methods Appl. Sci., 20 (2010), 987-1004.
doi: 10.1142/S0218202510004507.![]() ![]() ![]() |
[24] |
K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.
![]() ![]() |
[25] |
Y. Peng and Z. Xiang, Global existence and boundedness in a 3D Keller–Segel–Stokes system with nonlinear diffusion and rotational flux, Z. Angew. Math. Phys., 68 (2017), 26pp.
doi: 10.1007/s00033-017-0816-6.![]() ![]() ![]() |
[26] |
B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007.
doi: 10.1007/978-3-7643-7842-4.![]() ![]() ![]() |
[27] |
J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Ann. Mat. Pura Appl., 146 (1986), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[28] |
H. Sohr, The Navier–Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2001.
doi: 10.1007/978-3-0348-8255-2.![]() ![]() ![]() |
[29] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019.![]() ![]() ![]() |
[30] |
Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157-178.
doi: 10.1016/j.anihpc.2012.07.002.![]() ![]() ![]() |
[31] |
Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis–fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573.
doi: 10.1007/s00033-015-0541-y.![]() ![]() ![]() |
[32] |
J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.
doi: 10.1080/03605300701319003.![]() ![]() ![]() |
[33] |
I. Tuval, L. Cisneros and C. Dombrowski, et al., Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277–2282.
doi: 10.1073/pnas.0406724102.![]() ![]() |
[34] |
Y. Wang and X. Cao, Global classical solutions of a 3D chemotaxis–Stokes system with rotation, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3235-3254.
doi: 10.3934/dcdsb.2015.20.3235.![]() ![]() ![]() |
[35] |
Y. Wang, L. Liu, X. Zhang and Y. Wu, Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection, Applied Math. Comput., 258 (2015), 312-324.
doi: 10.1016/j.amc.2015.01.080.![]() ![]() ![]() |
[36] |
Y. Wang and Z. Xiang, Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation, J. Differential Equations, 259 (2015), 7578-7609.
doi: 10.1016/j.jde.2015.08.027.![]() ![]() ![]() |
[37] |
Y. Wang and Z. Xiang, Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: The 3D case, J. Differential Equations, 261 (2016), 4944-4973.
doi: 10.1016/j.jde.2016.07.010.![]() ![]() ![]() |
[38] |
Y. Wang, M. Winkler and Z. Xiang, Global classical solutions in a two-dimensional chemotaxis–Navier–Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 421-466.
![]() ![]() |
[39] |
M. Winkler, Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.
doi: 10.1080/03605300903473426.![]() ![]() ![]() |
[40] |
M. Winkler, Global large-data solutions in a chemotaxis–(Navier–)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865.![]() ![]() ![]() |
[41] |
M. Winkler, Stabilization in a two-dimensional chemotaxis–Navier–Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9.![]() ![]() ![]() |
[42] |
M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differential Equations, 54 (2015), 3789-3828.
doi: 10.1007/s00526-015-0922-2.![]() ![]() ![]() |
[43] |
M. Winkler, Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329–-1352.
doi: 10.1016/j.anihpc.2015.05.002.![]() ![]() ![]() |
[44] |
M. Winkler, Does fluid interaction affect regularity in the three-dimensional Keller-Segel System with saturated sensitivity?, J. Math. Fluid Mech., 20 (2018), 1889-1909.
doi: 10.1007/s00021-018-0395-0.![]() ![]() ![]() |
[45] |
M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.
doi: 10.1016/j.na.2009.07.045.![]() ![]() ![]() |
[46] |
F. Xu and L. Liu, On the well-posedness of the incompressible flow in porous media, J. Nonlinear Sci. Appl., 9 (2016), 6371-6381.
doi: 10.22436/jnsa.009.12.37.![]() ![]() ![]() |
[47] |
C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math., 70 (2009), 133-167.
doi: 10.1137/070711505.![]() ![]() ![]() |
[48] |
Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis–Navier–Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105.
doi: 10.1137/130936920.![]() ![]() ![]() |
[49] |
J. Zheng, Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140.
doi: 10.1016/j.jde.2015.02.003.![]() ![]() ![]() |
[50] |
J. Zheng, Boundedness of solutions to a quasilinear parabolic–parabolic Keller–Segel system with a logistic source, J. Math. Anal. Appl., 431 (2015), 867-888.
doi: 10.1016/j.jmaa.2015.05.071.![]() ![]() ![]() |
[51] |
J. Zheng, A note on boundedness of solutions to a higher-dimensional quasi-linear chemotaxis system with logistic source, ZAMM Z. Angew. Math. Mech., 97 (2017), 414-421.
doi: 10.1002/zamm.201600166.![]() ![]() ![]() |
[52] |
J. Zheng, Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with nonlinear diffusion, J. Differential Equations, 263 (2017), 2606-2629.
doi: 10.1016/j.jde.2017.04.005.![]() ![]() ![]() |
[53] |
J. Zheng, Boundedness in a two-species quasi-linear chemotaxis system with two chemicals, Topol. Methods Nonlinear Anal., 49 (2017), 463-480.
doi: 10.12775/TMNA.2016.082.![]() ![]() ![]() |
[54] |
J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Differential Equations, 267 (2019), 2385-2415.
doi: 10.1016/j.jde.2019.03.013.![]() ![]() ![]() |
[55] |
J. Zheng, A new result for the global boundedness and decay property of a three-dimensional Keller-Segel-Stokes system modeling coral fertilization, preprint.
![]() |
[56] |
J. Zheng, et. al., A new result for global existence and boundedness of solutions to a parabolic–parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., 462 (2018), 1–25.
doi: 10.1016/j.jmaa.2018.01.064.![]() ![]() ![]() |
[57] |
J. Zheng and Y. Wang, A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 669-686.
doi: 10.3934/dcdsb.2017032.![]() ![]() ![]() |