September  2020, 25(9): 3553-3576. doi: 10.3934/dcdsb.2020072

Dynamics of non-autonomous fractional Ginzburg-Landau equations driven by colored noise

1. 

School of Mathematics and Statistics, Shandong University, Weihai, Shandong 264209, China

2. 

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

3. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

* Corresponding author: Mingji Zhang

Received  August 2019 Published  April 2020

Fund Project: This work was supported by the NSF of China (No. 11601278 and No.11601274), the NSF of Shandong Province (No. ZR2019MA050) and MPS Simons Foundation of USA (No. 628308)

In this work, the existence and uniqueness of random attractors of a class of non-autonomous non-local fractional stochastic Ginzburg-Landau equation driven by colored noise with a nonlinear diffusion term is established. We comment that compared to white noise, the colored noise is much easier to handle in examining the pathwise dynamics of stochastic systems. Additionally, we prove the attractors of the random fractional Ginzburg-Landau system driven by a linear multiplicative colored noise converge to those of the corresponding stochastic system driven by a linear multiplicative white noise.

Citation: Hong Lu, Mingji Zhang. Dynamics of non-autonomous fractional Ginzburg-Landau equations driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3553-3576. doi: 10.3934/dcdsb.2020072
References:
[1]

S. Abe and S. Thurner, Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion, Physica A, 356 (2005), 403-407.   Google Scholar

[2]

L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley-Interscience, New York, 1974.  Google Scholar

[3]

L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[4]

L. CaffarelliJ. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.  Google Scholar

[5]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[6]

J. Doob, The Brownian movement and stochastic equations, Annals of Math., 43 (1942), 351-369.  doi: 10.2307/1968873.  Google Scholar

[7]

C. Gal and M. Warma, Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 1279-1319.  doi: 10.3934/dcds.2016.36.1279.  Google Scholar

[8]

A. Garroni and S. Muller, A variational model for dislocations in the line tension limit, Arch. Ration. Mech. Anal., 181 (2006), 535-578.  doi: 10.1007/s00205-006-0432-7.  Google Scholar

[9] W. GersterW. KistlerR. Naud and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, Cambridge University Press, Cambridge, 2014.   Google Scholar
[10]

A. Gu and B. Wang, Asyptotic behavior of random Fitzhugh-Nagumo systems deriven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.  Google Scholar

[11]

Q. Guan, Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006), 289-329.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[12]

Q. Guan and Z. Ma, Reflected symmetric $\alpha$-stable processes and regional fractional Laplacian, Probab. Theory Related Fields, 134 (2006), 649-694.  doi: 10.1007/s00440-005-0438-3.  Google Scholar

[13]

Q. Guan and Z. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005), 385-424.  doi: 10.1142/S021949370500150X.  Google Scholar

[14]

M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214.  doi: 10.1002/cpa.20253.  Google Scholar

[15]

T. JiangX. Liu and J. Duan, Approximation for random stable manifolds under multiplicative correlated noise, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3163-3174.  doi: 10.3934/dcdsb.2016091.  Google Scholar

[16]

N. van Kampen, Stochastic Processes in Physics and Chemistry, Amsterdam-New York, 1981.  Google Scholar

[17]

M. Klosek-DygasB. Matkowsky and Z. Schuss, Colored noise in dynamical systems, SIAM J. Appl. Math., 48 (1988), 425-441.  doi: 10.1137/0148023.  Google Scholar

[18]

M. KoslowskiA. Cuitino and M. Ortiz, A phasefield theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystal, J. Mech. Phys. Solids, 50 (2002), 2597-2635.  doi: 10.1016/S0022-5096(02)00037-6.  Google Scholar

[19]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of 3D fractional complex Ginzburg-Landau equation, J. Differential Equations, 259 (2015), 5276-5301.  doi: 10.1016/j.jde.2015.06.028.  Google Scholar

[20]

H. LuP. W. BatesJ. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $ \mathbb{R}^n$, Nonlinear Anal., 128 (2015), 176-198.  doi: 10.1016/j.na.2015.06.033.  Google Scholar

[21]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Comm. Math. Sci., 14 (2016), 273-295.  doi: 10.4310/CMS.2016.v14.n1.a11.  Google Scholar

[22]

H. LuS. Lv and M. Zhang, Fourier spectral approximation to the dynamical behavior of 3D fractional Ginzburg-Landau equation, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 2539-2564.  doi: 10.3934/dcds.2017109.  Google Scholar

[23]

H. Lu and M. Zhang, The spectral method for long-time behavior of a fractional power dissipative system., Taiwanese J. Math., 22 (2018), 453-483.  doi: 10.11650/tjm/170902.  Google Scholar

[24]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.   Google Scholar

[25]

X. Pu and B. Guo, Well-posedness and dynamics for the fractional Ginzburg-Landau equation, Applicable Analysis, 92 (2013), 318-334.  doi: 10.1080/00036811.2011.614601.  Google Scholar

[26] L. RidolfiP. D'Odorico and F. Laio, Noise-Induced Phenomena in the Environmental Sciences, Cambridge University Press, New York, 2011.  doi: 10.1017/CBO9780511984730.  Google Scholar
[27]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal de Mathematiques Pures et Appliquees, 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[28]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.  doi: 10.1017/S0308210512001783.  Google Scholar

[29]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[30]

G. Uhlenbeck and L. Ornstein, On the theory of Brownian motion, Phys. Rev., 36 (1930), 823-841.  doi: 10.1103/PhysRev.36.823.  Google Scholar

[31]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp. doi: 10.1142/S0219493714500099.  Google Scholar

[32]

M. Wang and G. Uhlenbeck, On the theory of Brownian motion. Ⅱ, Rev. Modern Phys., 17 (1945), 323-342.  doi: 10.1103/RevModPhys.17.323.  Google Scholar

show all references

References:
[1]

S. Abe and S. Thurner, Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion, Physica A, 356 (2005), 403-407.   Google Scholar

[2]

L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley-Interscience, New York, 1974.  Google Scholar

[3]

L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[4]

L. CaffarelliJ. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.  Google Scholar

[5]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[6]

J. Doob, The Brownian movement and stochastic equations, Annals of Math., 43 (1942), 351-369.  doi: 10.2307/1968873.  Google Scholar

[7]

C. Gal and M. Warma, Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 1279-1319.  doi: 10.3934/dcds.2016.36.1279.  Google Scholar

[8]

A. Garroni and S. Muller, A variational model for dislocations in the line tension limit, Arch. Ration. Mech. Anal., 181 (2006), 535-578.  doi: 10.1007/s00205-006-0432-7.  Google Scholar

[9] W. GersterW. KistlerR. Naud and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, Cambridge University Press, Cambridge, 2014.   Google Scholar
[10]

A. Gu and B. Wang, Asyptotic behavior of random Fitzhugh-Nagumo systems deriven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.  Google Scholar

[11]

Q. Guan, Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006), 289-329.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[12]

Q. Guan and Z. Ma, Reflected symmetric $\alpha$-stable processes and regional fractional Laplacian, Probab. Theory Related Fields, 134 (2006), 649-694.  doi: 10.1007/s00440-005-0438-3.  Google Scholar

[13]

Q. Guan and Z. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005), 385-424.  doi: 10.1142/S021949370500150X.  Google Scholar

[14]

M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214.  doi: 10.1002/cpa.20253.  Google Scholar

[15]

T. JiangX. Liu and J. Duan, Approximation for random stable manifolds under multiplicative correlated noise, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3163-3174.  doi: 10.3934/dcdsb.2016091.  Google Scholar

[16]

N. van Kampen, Stochastic Processes in Physics and Chemistry, Amsterdam-New York, 1981.  Google Scholar

[17]

M. Klosek-DygasB. Matkowsky and Z. Schuss, Colored noise in dynamical systems, SIAM J. Appl. Math., 48 (1988), 425-441.  doi: 10.1137/0148023.  Google Scholar

[18]

M. KoslowskiA. Cuitino and M. Ortiz, A phasefield theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystal, J. Mech. Phys. Solids, 50 (2002), 2597-2635.  doi: 10.1016/S0022-5096(02)00037-6.  Google Scholar

[19]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of 3D fractional complex Ginzburg-Landau equation, J. Differential Equations, 259 (2015), 5276-5301.  doi: 10.1016/j.jde.2015.06.028.  Google Scholar

[20]

H. LuP. W. BatesJ. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $ \mathbb{R}^n$, Nonlinear Anal., 128 (2015), 176-198.  doi: 10.1016/j.na.2015.06.033.  Google Scholar

[21]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Comm. Math. Sci., 14 (2016), 273-295.  doi: 10.4310/CMS.2016.v14.n1.a11.  Google Scholar

[22]

H. LuS. Lv and M. Zhang, Fourier spectral approximation to the dynamical behavior of 3D fractional Ginzburg-Landau equation, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 2539-2564.  doi: 10.3934/dcds.2017109.  Google Scholar

[23]

H. Lu and M. Zhang, The spectral method for long-time behavior of a fractional power dissipative system., Taiwanese J. Math., 22 (2018), 453-483.  doi: 10.11650/tjm/170902.  Google Scholar

[24]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.   Google Scholar

[25]

X. Pu and B. Guo, Well-posedness and dynamics for the fractional Ginzburg-Landau equation, Applicable Analysis, 92 (2013), 318-334.  doi: 10.1080/00036811.2011.614601.  Google Scholar

[26] L. RidolfiP. D'Odorico and F. Laio, Noise-Induced Phenomena in the Environmental Sciences, Cambridge University Press, New York, 2011.  doi: 10.1017/CBO9780511984730.  Google Scholar
[27]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal de Mathematiques Pures et Appliquees, 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[28]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.  doi: 10.1017/S0308210512001783.  Google Scholar

[29]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[30]

G. Uhlenbeck and L. Ornstein, On the theory of Brownian motion, Phys. Rev., 36 (1930), 823-841.  doi: 10.1103/PhysRev.36.823.  Google Scholar

[31]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp. doi: 10.1142/S0219493714500099.  Google Scholar

[32]

M. Wang and G. Uhlenbeck, On the theory of Brownian motion. Ⅱ, Rev. Modern Phys., 17 (1945), 323-342.  doi: 10.1103/RevModPhys.17.323.  Google Scholar

[1]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[2]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[3]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[4]

Renhai Wang, Yangrong Li, Bixiang Wang. Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4091-4126. doi: 10.3934/dcds.2019165

[5]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[6]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020175

[7]

Chi Phan. Random attractor for stochastic Hindmarsh-Rose equations with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3233-3256. doi: 10.3934/dcdsb.2020060

[8]

Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056

[9]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[10]

Boris Anicet Guimfack, Conrad Bertrand Tabi, Alidou Mohamadou, Timoléon Crépin Kofané. Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020397

[11]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[12]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[13]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[14]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

[15]

Anhui Gu, Boling Guo, Bixiang Wang. Long term behavior of random Navier-Stokes equations driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2495-2532. doi: 10.3934/dcdsb.2020020

[16]

Xinfu Chen, Carey Caginalp, Jianghao Hao, Yajing Zhang. Effects of white noise in multistable dynamics. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1805-1825. doi: 10.3934/dcdsb.2013.18.1805

[17]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[18]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[19]

Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575

[20]

Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (25)
  • HTML views (100)
  • Cited by (0)

Other articles
by authors

[Back to Top]