September  2020, 25(9): 3577-3596. doi: 10.3934/dcdsb.2020073

Singular renormalization group approach to SIS problems

1. 

School of Mathematics, Jilin University, Changchun 130012, China

2. 

School of Mathematics & State Key Laboratory of Automotive, Simulation and Control, Jilin University, Changchun 130012, China

*Corresponding author: Wenlei Li (lwlei@jlu.edu.cn)

Received  August 2019 Revised  November 2019 Published  September 2020 Early access  April 2020

Fund Project: This work is supported by NSFC grant (No. 11771177, 11301210), China Automobile Industry Innovation and Development Joint Fund (No. U1664257), Program for Changbaishan Scholars of Jilin Province and Program for JLU Science, Technology Innovative Research Team (No. 2017TD-20), NSF grant (No. 20190201132JC) and ESF grant (No. JJKH20170776KJ) of Jilin, China

In this paper, we consider the boundary value problems of a one-dimensional steady-state SIS epidemic reaction-diffusion-advection system in the following two cases: (ⅰ) the advection rate is relatively large comparing to the diffusion rates of infected and susceptible populations; (ⅱ) the diffusion rate of the susceptible population approaches zero. By introducing a singular parameter, the system can be viewed as a singularly perturbed problem. By the renormalization group method, we construct the first-order approximate solutions and obtain error estimates.

Citation: Ning Sun, Shaoyun Shi, Wenlei Li. Singular renormalization group approach to SIS problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3577-3596. doi: 10.3934/dcdsb.2020073
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.

[2]

D. Bl$\ddot{o}$mkerC. Gugg and S. Maier-Paape, Stochastic Navier-Stokes equation and renormalization group theory, Phys. D, 173 (2002), 137-152.  doi: 10.1016/S0167-2789(02)00621-8.

[3]

D. Boyanovsky and H. J. D. Vega, Dynamical renormalization group approach to relaxation in quantum field theory, Ann. Phys., 307 (2003), 335-371.  doi: 10.1016/S0003-4916(03)00115-5.

[4]

Y. L. Cai and W. M. Wang, Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 989-1013.  doi: 10.3934/dcdsb.2015.20.989.

[5]

L. Y. ChenN. Goldenfeld and Y. Oono, Renormalization group theory for global asymptotic analysis, Phys. Rev. Lett., 73 (1994), 1311-1315.  doi: 10.1103/PhysRevLett.73.1311.

[6]

H. Chiba, $C^1$ Approximation of vector fields based on the renormalization group method, SIAM J. Appl. Dyn. Syst., 7 (2008), 895-932.  doi: 10.1137/070694892.

[7]

H. Chiba, Approximation of center manifolds on the renormalization group method, J. Math. Phys., 49 (2008), 102703, 11pp. doi: 10.1063/1.2996290.

[8]

R. H. CuiK. Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.  doi: 10.1016/j.jde.2017.03.045.

[9]

R. H. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.

[10]

K. A. DahmenD. R. Nelson and N. M. Shnerb, Life and death near a windy oasis, J. Math. Biol., 41 (2000), 1-23.  doi: 10.1007/s002850000025.

[11]

K. Deng and Y. X. Wu, Dynamics of an susceptible-infected-susceptible epidemic reaction-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929-946.  doi: 10.1017/S0308210515000864.

[12]

R. E. L. DeVilleA. HarkinM. HolzerK. Josi$\acute{c}$ and T. J. Kaper, Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations, Phys. D, 237 (2008), 1029-1052.  doi: 10.1016/j.physd.2007.12.009.

[13]

N. Glatt-Holtz and M. Ziane, Singular perturbation systems with stochastic forcing and the renormalization group method, Discrete Contin. Dyn. Syst., 26 (2010), 1241-1268.  doi: 10.3934/dcds.2010.26.1241.

[14]

A. N. GorbanI. V. Karlin and A. Y. Zinovyev, Constructive methods of invariant manifolds for kinetic problems, Phys. Rep., 396 (2004), 197-403.  doi: 10.1016/j.physrep.2004.03.006.

[15]

K. Kuto, H. Matsuzawa, and R. Peng, Concentration profile of endemic equilibrium of a reaction-diffusion-advection SIS epidemic model, Calc. Var. Partial Differential Equations, 56 (2017), Art. 112, 28 pp. doi: 10.1007/s00526-017-1207-8.

[16]

K. Y. LamY. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 188-212.  doi: 10.1080/17513758.2014.969336.

[17]

H. C. LiR. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.  doi: 10.1016/j.jde.2016.09.044.

[18]

W. L. Li and S. Y. Shi, Singular perturbed renormalization group theory and its application to highly oscillatory problems, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1819-1833. 

[19]

Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.  doi: 10.1007/s00285-013-0730-2.

[20]

F. LutscherM. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160.  doi: 10.1007/s11538-006-9100-1.

[21]

F. LutscherE. McCauley and M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theor. Popul. Biol., 71 (2007), 267-277. 

[22]

F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.  doi: 10.1137/050636152.

[23]

I. Moise and R. Temam, Renormalization group method. Applications to Navier-Stokes equation, Discrete Contin. Dyn. Syst., 6 (2000), 191-200.  doi: 10.3934/dcds.2000.6.191.

[24]

I. Moise and M. Ziane, Renormalization group method. Applications to partial differential equations, J. Dynam. Differential Equations, 13 (2001), 275-321.  doi: 10.1023/A:1016680007953.

[25]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. I, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.

[26]

R. Peng and S. Q. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.

[27]

R. Peng and F. Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: Effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.

[28]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.

[29]

R. ZhouS. Y. Shi and W. L. Li, Renormalization group approach to boundary layer problems, Commun. Nonlinear Sci. Numer. Simul., 71 (2019), 220-230.  doi: 10.1016/j.cnsns.2018.11.012.

[30]

M. Ziane, On a certain renormalization group method, J. Math. Phys., 41 (2003), 3290-3299.  doi: 10.1063/1.533307.

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.

[2]

D. Bl$\ddot{o}$mkerC. Gugg and S. Maier-Paape, Stochastic Navier-Stokes equation and renormalization group theory, Phys. D, 173 (2002), 137-152.  doi: 10.1016/S0167-2789(02)00621-8.

[3]

D. Boyanovsky and H. J. D. Vega, Dynamical renormalization group approach to relaxation in quantum field theory, Ann. Phys., 307 (2003), 335-371.  doi: 10.1016/S0003-4916(03)00115-5.

[4]

Y. L. Cai and W. M. Wang, Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 989-1013.  doi: 10.3934/dcdsb.2015.20.989.

[5]

L. Y. ChenN. Goldenfeld and Y. Oono, Renormalization group theory for global asymptotic analysis, Phys. Rev. Lett., 73 (1994), 1311-1315.  doi: 10.1103/PhysRevLett.73.1311.

[6]

H. Chiba, $C^1$ Approximation of vector fields based on the renormalization group method, SIAM J. Appl. Dyn. Syst., 7 (2008), 895-932.  doi: 10.1137/070694892.

[7]

H. Chiba, Approximation of center manifolds on the renormalization group method, J. Math. Phys., 49 (2008), 102703, 11pp. doi: 10.1063/1.2996290.

[8]

R. H. CuiK. Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.  doi: 10.1016/j.jde.2017.03.045.

[9]

R. H. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.

[10]

K. A. DahmenD. R. Nelson and N. M. Shnerb, Life and death near a windy oasis, J. Math. Biol., 41 (2000), 1-23.  doi: 10.1007/s002850000025.

[11]

K. Deng and Y. X. Wu, Dynamics of an susceptible-infected-susceptible epidemic reaction-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929-946.  doi: 10.1017/S0308210515000864.

[12]

R. E. L. DeVilleA. HarkinM. HolzerK. Josi$\acute{c}$ and T. J. Kaper, Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations, Phys. D, 237 (2008), 1029-1052.  doi: 10.1016/j.physd.2007.12.009.

[13]

N. Glatt-Holtz and M. Ziane, Singular perturbation systems with stochastic forcing and the renormalization group method, Discrete Contin. Dyn. Syst., 26 (2010), 1241-1268.  doi: 10.3934/dcds.2010.26.1241.

[14]

A. N. GorbanI. V. Karlin and A. Y. Zinovyev, Constructive methods of invariant manifolds for kinetic problems, Phys. Rep., 396 (2004), 197-403.  doi: 10.1016/j.physrep.2004.03.006.

[15]

K. Kuto, H. Matsuzawa, and R. Peng, Concentration profile of endemic equilibrium of a reaction-diffusion-advection SIS epidemic model, Calc. Var. Partial Differential Equations, 56 (2017), Art. 112, 28 pp. doi: 10.1007/s00526-017-1207-8.

[16]

K. Y. LamY. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 188-212.  doi: 10.1080/17513758.2014.969336.

[17]

H. C. LiR. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.  doi: 10.1016/j.jde.2016.09.044.

[18]

W. L. Li and S. Y. Shi, Singular perturbed renormalization group theory and its application to highly oscillatory problems, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1819-1833. 

[19]

Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.  doi: 10.1007/s00285-013-0730-2.

[20]

F. LutscherM. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160.  doi: 10.1007/s11538-006-9100-1.

[21]

F. LutscherE. McCauley and M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theor. Popul. Biol., 71 (2007), 267-277. 

[22]

F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.  doi: 10.1137/050636152.

[23]

I. Moise and R. Temam, Renormalization group method. Applications to Navier-Stokes equation, Discrete Contin. Dyn. Syst., 6 (2000), 191-200.  doi: 10.3934/dcds.2000.6.191.

[24]

I. Moise and M. Ziane, Renormalization group method. Applications to partial differential equations, J. Dynam. Differential Equations, 13 (2001), 275-321.  doi: 10.1023/A:1016680007953.

[25]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. I, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.

[26]

R. Peng and S. Q. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.

[27]

R. Peng and F. Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: Effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.

[28]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.

[29]

R. ZhouS. Y. Shi and W. L. Li, Renormalization group approach to boundary layer problems, Commun. Nonlinear Sci. Numer. Simul., 71 (2019), 220-230.  doi: 10.1016/j.cnsns.2018.11.012.

[30]

M. Ziane, On a certain renormalization group method, J. Math. Phys., 41 (2003), 3290-3299.  doi: 10.1063/1.533307.

[1]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[2]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

[3]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[4]

Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013

[5]

Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291

[6]

David Greenhalgh, Yanfeng Liang, Xuerong Mao. Demographic stochasticity in the SDE SIS epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2859-2884. doi: 10.3934/dcdsb.2015.20.2859

[7]

Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure and Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037

[8]

Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134

[9]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[10]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[11]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[12]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[13]

Noémi Nagy, Péter L. Simon. Detailed analytic study of the compact pairwise model for SIS epidemic propagation on networks. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 99-115. doi: 10.3934/dcdsb.2019174

[14]

Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169

[15]

Yachun Tong, Inkyung Ahn, Zhigui Lin. Effect of diffusion in a spatial SIS epidemic model with spontaneous infection. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4045-4057. doi: 10.3934/dcdsb.2020273

[16]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317

[17]

Mamadou L. Diagne, Ousmane Seydi, Aissata A. B. Sy. A two-group age of infection epidemic model with periodic behavioral changes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2057-2092. doi: 10.3934/dcdsb.2019202

[18]

Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080

[19]

Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multi-group SIR epidemic model with age structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3515-3550. doi: 10.3934/dcdsb.2016109

[20]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (239)
  • HTML views (195)
  • Cited by (0)

Other articles
by authors

[Back to Top]