In this paper, we show that for discrete time-varying linear control systems uniform complete controllability implies arbitrary assignability of dichotomy spectrum of closed-loop systems. This result significantly strengthens the result in [
Citation: |
[1] | L. Ya. Adrianova, Introduction to Linear Systems of Differential Equations, Translated from the Russian by Peter Zhevandrov. Translations of Mathematical Monographs, 146. American Mathematical Society, Providence, RI, 1995. |
[2] | B. Aulbach, C. Pötzsche and S. Siegmund, A smoothness theorem for invariant fiber bundles, J. Dynam. Differential Equations, 14 (2002), 519-547. doi: 10.1023/A:1016383031231. |
[3] | B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference equations, Proc. of 5th Int. Conference on Difference Equations and Applications, Temuco/Chile, 2002, 45–55. |
[4] | A. Babiarz, I. Banshchikova, A. Czornik, E. K. Makarov, M. Niezabitowski and S. Popova, Necessary and sufficient conditions for assignability of the Lyapunov spectrum of discrete linear time-varying systems, IEEE Trans. Automat. Control, 63 (2018), 3825-3837. doi: 10.1109/TAC.2018.2823086. |
[5] | A. Babiarz, A. Czornik, E. Makarov, M. Niezabitowski and S. Popova, Pole placement theorem for discrete time-varying linear systems, SIAM J. Control Optim., 55 (2017), 671-692. doi: 10.1137/15M1033666. |
[6] | L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Mathematics, 1926. Springer, Berlin, 2008. doi: 10.1007/978-3-540-74775-8. |
[7] | F. Battelli and K. J. Palmer, Criteria for exponential dichotomy for triangular systems, J. Math. Anal. Appl., 428 (2015), 525-543. doi: 10.1016/j.jmaa.2015.03.029. |
[8] | L. V. Cuong, T. S. Doan and S. Siegmund, A Sternberg theorem for nonautonomous differential equations, J. Dynam. Differential Equations, 31 (2019), 1279-1299. doi: 10.1007/s10884-017-9629-8. |
[9] | R. A. Johnson, K. J. Palmer and G. R. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal., 18 (1987), 1-33. doi: 10.1137/0518001. |
[10] | P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, 2011. doi: 10.1090/surv/176. |
[11] | K. J. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 41 (1973), 753-758. doi: 10.1016/0022-247X(73)90245-X. |
[12] | C. Pötzsche and S. Siegmund, $C^m$-smoothness of invariant fiber bundles, Topol. Methods Nonlinear Anal., 24 (2004), 107-145. doi: 10.12775/TMNA.2004.021. |
[13] | S. Popova, On the global controllability of Lyapunov exponents of linear systems, Differential Equations, 43 (2007), 1072-1078. doi: 10.1134/S0012266107080058. |
[14] | C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, 2002. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14258-1. |
[15] | C. Pötzsche, Dichotomy spectra of triangular equations, Discrete & Continuous Dynamical Systems, 36 (2016), 423-450. doi: 10.3934/dcds.2016.36.423. |
[16] | M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, 1907. Springer, Berlin, 2007. |
[17] | R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358. doi: 10.1016/0022-0396(78)90057-8. |
[18] | A. L. Sasu and B. Sasu, On the dichotomic behavior of discrete dynamical systems on the half-line, Discrete & Continuous Dynamical Systems, 33 (2013), 3057-3084. doi: 10.3934/dcds.2013.33.3057. |
[19] | A. L. Sasu and B. Sasu, Discrete admissibility and exponential trichotomy of dynamical systems, Discrete & Continuous Dynamical Systems, 34 (2014), 2929-2962. doi: 10.3934/dcds.2014.34.2929. |
[20] | S. Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dynam. Differential Equations, 14 (2002), 243-258. doi: 10.1023/A:1012919512399. |
[21] | S. Siegmund, Normal forms for nonautonomous differential equations, J. Differential Equations, 178 (2002), 541-573. doi: 10.1006/jdeq.2000.4008. |