• Previous Article
    A delayed differential equation model for mosquito population suppression with sterile mosquitoes
  • DCDS-B Home
  • This Issue
  • Next Article
    Calderón-Zygmund estimates for quasilinear elliptic double obstacle problems with variable exponent and logarithmic growth
doi: 10.3934/dcdsb.2020074

Assignability of dichotomy spectra for discrete time-varying linear control systems

1. 

Department of Information Technology, National University of Civil Engineering, 55 Giai Phong str., Hanoi, Vietnam

2. 

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam

3. 

Thang Long Institute of Mathematics and Applied Sciences, Thang Long University, Nghiem Xuan Yem Road, Hoang Mai, Hanoi, Vietnam

Received  August 2019 Revised  November 2019 Published  January 2020

Fund Project: This research is funded by Vietnam National University of Civil Engineering (NUCE) under grant number 202-2018/KHXD-TD.

In this paper, we show that for discrete time-varying linear control systems uniform complete controllability implies arbitrary assignability of dichotomy spectrum of closed-loop systems. This result significantly strengthens the result in [5] about arbitrary assignability of Lyapunov spectrum of discrete time-varying linear control systems.

Citation: Le Viet Cuong, Thai Son Doan. Assignability of dichotomy spectra for discrete time-varying linear control systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020074
References:
[1]

L. Ya. Adrianova, Introduction to Linear Systems of Differential Equations, Translated from the Russian by Peter Zhevandrov. Translations of Mathematical Monographs, 146. American Mathematical Society, Providence, RI, 1995.  Google Scholar

[2]

B. AulbachC. Pötzsche and S. Siegmund, A smoothness theorem for invariant fiber bundles, J. Dynam. Differential Equations, 14 (2002), 519-547.  doi: 10.1023/A:1016383031231.  Google Scholar

[3]

B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference equations, Proc. of 5th Int. Conference on Difference Equations and Applications, Temuco/Chile, 2002, 45–55.  Google Scholar

[4]

A. BabiarzI. BanshchikovaA. CzornikE. K. MakarovM. Niezabitowski and S. Popova, Necessary and sufficient conditions for assignability of the Lyapunov spectrum of discrete linear time-varying systems, IEEE Trans. Automat. Control, 63 (2018), 3825-3837.  doi: 10.1109/TAC.2018.2823086.  Google Scholar

[5]

A. BabiarzA. CzornikE. MakarovM. Niezabitowski and S. Popova, Pole placement theorem for discrete time-varying linear systems, SIAM J. Control Optim., 55 (2017), 671-692.  doi: 10.1137/15M1033666.  Google Scholar

[6]

L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Mathematics, 1926. Springer, Berlin, 2008. doi: 10.1007/978-3-540-74775-8.  Google Scholar

[7]

F. Battelli and K. J. Palmer, Criteria for exponential dichotomy for triangular systems, J. Math. Anal. Appl., 428 (2015), 525-543.  doi: 10.1016/j.jmaa.2015.03.029.  Google Scholar

[8]

L. V. CuongT. S. Doan and S. Siegmund, A Sternberg theorem for nonautonomous differential equations, J. Dynam. Differential Equations, 31 (2019), 1279-1299.  doi: 10.1007/s10884-017-9629-8.  Google Scholar

[9]

R. A. JohnsonK. J. Palmer and G. R. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal., 18 (1987), 1-33.  doi: 10.1137/0518001.  Google Scholar

[10]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, 2011. doi: 10.1090/surv/176.  Google Scholar

[11]

K. J. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 41 (1973), 753-758.  doi: 10.1016/0022-247X(73)90245-X.  Google Scholar

[12]

C. Pötzsche and S. Siegmund, $C^m$-smoothness of invariant fiber bundles, Topol. Methods Nonlinear Anal., 24 (2004), 107-145.  doi: 10.12775/TMNA.2004.021.  Google Scholar

[13]

S. Popova, On the global controllability of Lyapunov exponents of linear systems, Differential Equations, 43 (2007), 1072-1078.  doi: 10.1134/S0012266107080058.  Google Scholar

[14]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, 2002. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14258-1.  Google Scholar

[15]

C. Pötzsche, Dichotomy spectra of triangular equations, Discrete & Continuous Dynamical Systems, 36 (2016), 423-450.  doi: 10.3934/dcds.2016.36.423.  Google Scholar

[16]

M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, 1907. Springer, Berlin, 2007.  Google Scholar

[17]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[18]

A. L. Sasu and B. Sasu, On the dichotomic behavior of discrete dynamical systems on the half-line, Discrete & Continuous Dynamical Systems, 33 (2013), 3057-3084.  doi: 10.3934/dcds.2013.33.3057.  Google Scholar

[19]

A. L. Sasu and B. Sasu, Discrete admissibility and exponential trichotomy of dynamical systems, Discrete & Continuous Dynamical Systems, 34 (2014), 2929-2962.  doi: 10.3934/dcds.2014.34.2929.  Google Scholar

[20]

S. Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dynam. Differential Equations, 14 (2002), 243-258.  doi: 10.1023/A:1012919512399.  Google Scholar

[21]

S. Siegmund, Normal forms for nonautonomous differential equations, J. Differential Equations, 178 (2002), 541-573.  doi: 10.1006/jdeq.2000.4008.  Google Scholar

show all references

References:
[1]

L. Ya. Adrianova, Introduction to Linear Systems of Differential Equations, Translated from the Russian by Peter Zhevandrov. Translations of Mathematical Monographs, 146. American Mathematical Society, Providence, RI, 1995.  Google Scholar

[2]

B. AulbachC. Pötzsche and S. Siegmund, A smoothness theorem for invariant fiber bundles, J. Dynam. Differential Equations, 14 (2002), 519-547.  doi: 10.1023/A:1016383031231.  Google Scholar

[3]

B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference equations, Proc. of 5th Int. Conference on Difference Equations and Applications, Temuco/Chile, 2002, 45–55.  Google Scholar

[4]

A. BabiarzI. BanshchikovaA. CzornikE. K. MakarovM. Niezabitowski and S. Popova, Necessary and sufficient conditions for assignability of the Lyapunov spectrum of discrete linear time-varying systems, IEEE Trans. Automat. Control, 63 (2018), 3825-3837.  doi: 10.1109/TAC.2018.2823086.  Google Scholar

[5]

A. BabiarzA. CzornikE. MakarovM. Niezabitowski and S. Popova, Pole placement theorem for discrete time-varying linear systems, SIAM J. Control Optim., 55 (2017), 671-692.  doi: 10.1137/15M1033666.  Google Scholar

[6]

L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Mathematics, 1926. Springer, Berlin, 2008. doi: 10.1007/978-3-540-74775-8.  Google Scholar

[7]

F. Battelli and K. J. Palmer, Criteria for exponential dichotomy for triangular systems, J. Math. Anal. Appl., 428 (2015), 525-543.  doi: 10.1016/j.jmaa.2015.03.029.  Google Scholar

[8]

L. V. CuongT. S. Doan and S. Siegmund, A Sternberg theorem for nonautonomous differential equations, J. Dynam. Differential Equations, 31 (2019), 1279-1299.  doi: 10.1007/s10884-017-9629-8.  Google Scholar

[9]

R. A. JohnsonK. J. Palmer and G. R. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal., 18 (1987), 1-33.  doi: 10.1137/0518001.  Google Scholar

[10]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, 2011. doi: 10.1090/surv/176.  Google Scholar

[11]

K. J. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 41 (1973), 753-758.  doi: 10.1016/0022-247X(73)90245-X.  Google Scholar

[12]

C. Pötzsche and S. Siegmund, $C^m$-smoothness of invariant fiber bundles, Topol. Methods Nonlinear Anal., 24 (2004), 107-145.  doi: 10.12775/TMNA.2004.021.  Google Scholar

[13]

S. Popova, On the global controllability of Lyapunov exponents of linear systems, Differential Equations, 43 (2007), 1072-1078.  doi: 10.1134/S0012266107080058.  Google Scholar

[14]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, 2002. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14258-1.  Google Scholar

[15]

C. Pötzsche, Dichotomy spectra of triangular equations, Discrete & Continuous Dynamical Systems, 36 (2016), 423-450.  doi: 10.3934/dcds.2016.36.423.  Google Scholar

[16]

M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, 1907. Springer, Berlin, 2007.  Google Scholar

[17]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[18]

A. L. Sasu and B. Sasu, On the dichotomic behavior of discrete dynamical systems on the half-line, Discrete & Continuous Dynamical Systems, 33 (2013), 3057-3084.  doi: 10.3934/dcds.2013.33.3057.  Google Scholar

[19]

A. L. Sasu and B. Sasu, Discrete admissibility and exponential trichotomy of dynamical systems, Discrete & Continuous Dynamical Systems, 34 (2014), 2929-2962.  doi: 10.3934/dcds.2014.34.2929.  Google Scholar

[20]

S. Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dynam. Differential Equations, 14 (2002), 243-258.  doi: 10.1023/A:1012919512399.  Google Scholar

[21]

S. Siegmund, Normal forms for nonautonomous differential equations, J. Differential Equations, 178 (2002), 541-573.  doi: 10.1006/jdeq.2000.4008.  Google Scholar

[1]

Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2287-2304. doi: 10.3934/dcds.2018094

[2]

K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019050

[3]

Wei Feng, Xin Lu. Global stability in a class of reaction-diffusion systems with time-varying delays. Conference Publications, 1998, 1998 (Special) : 253-261. doi: 10.3934/proc.1998.1998.253

[4]

Lizhao Yan, Fei Xu, Yongzeng Lai, Mingyong Lai. Stability strategies of manufacturing-inventory systems with unknown time-varying demand. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2033-2047. doi: 10.3934/jimo.2017030

[5]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[6]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[7]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[8]

Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407

[9]

Mohammad-Sahadet Hossain. Projection-based model reduction for time-varying descriptor systems: New results. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 73-90. doi: 10.3934/naco.2016.6.73

[10]

Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535

[11]

Larbi Berrahmoune. Null controllability for distributed systems with time-varying constraint and applications to parabolic-like equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020062

[12]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[13]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[14]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[15]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[16]

Bassam Fayad, A. Windsor. A dichotomy between discrete and continuous spectrum for a class of special flows over rotations. Journal of Modern Dynamics, 2007, 1 (1) : 107-122. doi: 10.3934/jmd.2007.1.107

[17]

Marcy Barge. Pure discrete spectrum for a class of one-dimensional substitution tiling systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1159-1173. doi: 10.3934/dcds.2016.36.1159

[18]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[19]

Fabien Durand, Alejandro Maass. A note on limit laws for minimal Cantor systems with infinite periodic spectrum. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 745-750. doi: 10.3934/dcds.2003.9.745

[20]

Wen Huang, Zhiren Wang, Guohua Zhang. Möbius disjointness for topological models of ergodic systems with discrete spectrum. Journal of Modern Dynamics, 2019, 14: 277-290. doi: 10.3934/jmd.2019010

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (45)
  • HTML views (112)
  • Cited by (0)

Other articles
by authors

[Back to Top]