September  2020, 25(9): 3597-3607. doi: 10.3934/dcdsb.2020074

Assignability of dichotomy spectra for discrete time-varying linear control systems

1. 

Department of Information Technology, National University of Civil Engineering, 55 Giai Phong str., Hanoi, Vietnam

2. 

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam

3. 

Thang Long Institute of Mathematics and Applied Sciences, Thang Long University, Nghiem Xuan Yem Road, Hoang Mai, Hanoi, Vietnam

Received  August 2019 Revised  November 2019 Published  April 2020

Fund Project: This research is funded by Vietnam National University of Civil Engineering (NUCE) under grant number 202-2018/KHXD-TD

In this paper, we show that for discrete time-varying linear control systems uniform complete controllability implies arbitrary assignability of dichotomy spectrum of closed-loop systems. This result significantly strengthens the result in [5] about arbitrary assignability of Lyapunov spectrum of discrete time-varying linear control systems.

Citation: Le Viet Cuong, Thai Son Doan. Assignability of dichotomy spectra for discrete time-varying linear control systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3597-3607. doi: 10.3934/dcdsb.2020074
References:
[1]

L. Ya. Adrianova, Introduction to Linear Systems of Differential Equations, Translated from the Russian by Peter Zhevandrov. Translations of Mathematical Monographs, 146. American Mathematical Society, Providence, RI, 1995.  Google Scholar

[2]

B. AulbachC. Pötzsche and S. Siegmund, A smoothness theorem for invariant fiber bundles, J. Dynam. Differential Equations, 14 (2002), 519-547.  doi: 10.1023/A:1016383031231.  Google Scholar

[3]

B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference equations, Proc. of 5th Int. Conference on Difference Equations and Applications, Temuco/Chile, 2002, 45–55.  Google Scholar

[4]

A. BabiarzI. BanshchikovaA. CzornikE. K. MakarovM. Niezabitowski and S. Popova, Necessary and sufficient conditions for assignability of the Lyapunov spectrum of discrete linear time-varying systems, IEEE Trans. Automat. Control, 63 (2018), 3825-3837.  doi: 10.1109/TAC.2018.2823086.  Google Scholar

[5]

A. BabiarzA. CzornikE. MakarovM. Niezabitowski and S. Popova, Pole placement theorem for discrete time-varying linear systems, SIAM J. Control Optim., 55 (2017), 671-692.  doi: 10.1137/15M1033666.  Google Scholar

[6]

L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Mathematics, 1926. Springer, Berlin, 2008. doi: 10.1007/978-3-540-74775-8.  Google Scholar

[7]

F. Battelli and K. J. Palmer, Criteria for exponential dichotomy for triangular systems, J. Math. Anal. Appl., 428 (2015), 525-543.  doi: 10.1016/j.jmaa.2015.03.029.  Google Scholar

[8]

L. V. CuongT. S. Doan and S. Siegmund, A Sternberg theorem for nonautonomous differential equations, J. Dynam. Differential Equations, 31 (2019), 1279-1299.  doi: 10.1007/s10884-017-9629-8.  Google Scholar

[9]

R. A. JohnsonK. J. Palmer and G. R. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal., 18 (1987), 1-33.  doi: 10.1137/0518001.  Google Scholar

[10]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, 2011. doi: 10.1090/surv/176.  Google Scholar

[11]

K. J. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 41 (1973), 753-758.  doi: 10.1016/0022-247X(73)90245-X.  Google Scholar

[12]

C. Pötzsche and S. Siegmund, $C^m$-smoothness of invariant fiber bundles, Topol. Methods Nonlinear Anal., 24 (2004), 107-145.  doi: 10.12775/TMNA.2004.021.  Google Scholar

[13]

S. Popova, On the global controllability of Lyapunov exponents of linear systems, Differential Equations, 43 (2007), 1072-1078.  doi: 10.1134/S0012266107080058.  Google Scholar

[14]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, 2002. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14258-1.  Google Scholar

[15]

C. Pötzsche, Dichotomy spectra of triangular equations, Discrete & Continuous Dynamical Systems, 36 (2016), 423-450.  doi: 10.3934/dcds.2016.36.423.  Google Scholar

[16]

M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, 1907. Springer, Berlin, 2007.  Google Scholar

[17]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[18]

A. L. Sasu and B. Sasu, On the dichotomic behavior of discrete dynamical systems on the half-line, Discrete & Continuous Dynamical Systems, 33 (2013), 3057-3084.  doi: 10.3934/dcds.2013.33.3057.  Google Scholar

[19]

A. L. Sasu and B. Sasu, Discrete admissibility and exponential trichotomy of dynamical systems, Discrete & Continuous Dynamical Systems, 34 (2014), 2929-2962.  doi: 10.3934/dcds.2014.34.2929.  Google Scholar

[20]

S. Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dynam. Differential Equations, 14 (2002), 243-258.  doi: 10.1023/A:1012919512399.  Google Scholar

[21]

S. Siegmund, Normal forms for nonautonomous differential equations, J. Differential Equations, 178 (2002), 541-573.  doi: 10.1006/jdeq.2000.4008.  Google Scholar

show all references

References:
[1]

L. Ya. Adrianova, Introduction to Linear Systems of Differential Equations, Translated from the Russian by Peter Zhevandrov. Translations of Mathematical Monographs, 146. American Mathematical Society, Providence, RI, 1995.  Google Scholar

[2]

B. AulbachC. Pötzsche and S. Siegmund, A smoothness theorem for invariant fiber bundles, J. Dynam. Differential Equations, 14 (2002), 519-547.  doi: 10.1023/A:1016383031231.  Google Scholar

[3]

B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference equations, Proc. of 5th Int. Conference on Difference Equations and Applications, Temuco/Chile, 2002, 45–55.  Google Scholar

[4]

A. BabiarzI. BanshchikovaA. CzornikE. K. MakarovM. Niezabitowski and S. Popova, Necessary and sufficient conditions for assignability of the Lyapunov spectrum of discrete linear time-varying systems, IEEE Trans. Automat. Control, 63 (2018), 3825-3837.  doi: 10.1109/TAC.2018.2823086.  Google Scholar

[5]

A. BabiarzA. CzornikE. MakarovM. Niezabitowski and S. Popova, Pole placement theorem for discrete time-varying linear systems, SIAM J. Control Optim., 55 (2017), 671-692.  doi: 10.1137/15M1033666.  Google Scholar

[6]

L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Mathematics, 1926. Springer, Berlin, 2008. doi: 10.1007/978-3-540-74775-8.  Google Scholar

[7]

F. Battelli and K. J. Palmer, Criteria for exponential dichotomy for triangular systems, J. Math. Anal. Appl., 428 (2015), 525-543.  doi: 10.1016/j.jmaa.2015.03.029.  Google Scholar

[8]

L. V. CuongT. S. Doan and S. Siegmund, A Sternberg theorem for nonautonomous differential equations, J. Dynam. Differential Equations, 31 (2019), 1279-1299.  doi: 10.1007/s10884-017-9629-8.  Google Scholar

[9]

R. A. JohnsonK. J. Palmer and G. R. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal., 18 (1987), 1-33.  doi: 10.1137/0518001.  Google Scholar

[10]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, 2011. doi: 10.1090/surv/176.  Google Scholar

[11]

K. J. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 41 (1973), 753-758.  doi: 10.1016/0022-247X(73)90245-X.  Google Scholar

[12]

C. Pötzsche and S. Siegmund, $C^m$-smoothness of invariant fiber bundles, Topol. Methods Nonlinear Anal., 24 (2004), 107-145.  doi: 10.12775/TMNA.2004.021.  Google Scholar

[13]

S. Popova, On the global controllability of Lyapunov exponents of linear systems, Differential Equations, 43 (2007), 1072-1078.  doi: 10.1134/S0012266107080058.  Google Scholar

[14]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, 2002. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14258-1.  Google Scholar

[15]

C. Pötzsche, Dichotomy spectra of triangular equations, Discrete & Continuous Dynamical Systems, 36 (2016), 423-450.  doi: 10.3934/dcds.2016.36.423.  Google Scholar

[16]

M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, 1907. Springer, Berlin, 2007.  Google Scholar

[17]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[18]

A. L. Sasu and B. Sasu, On the dichotomic behavior of discrete dynamical systems on the half-line, Discrete & Continuous Dynamical Systems, 33 (2013), 3057-3084.  doi: 10.3934/dcds.2013.33.3057.  Google Scholar

[19]

A. L. Sasu and B. Sasu, Discrete admissibility and exponential trichotomy of dynamical systems, Discrete & Continuous Dynamical Systems, 34 (2014), 2929-2962.  doi: 10.3934/dcds.2014.34.2929.  Google Scholar

[20]

S. Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dynam. Differential Equations, 14 (2002), 243-258.  doi: 10.1023/A:1012919512399.  Google Scholar

[21]

S. Siegmund, Normal forms for nonautonomous differential equations, J. Differential Equations, 178 (2002), 541-573.  doi: 10.1006/jdeq.2000.4008.  Google Scholar

[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[3]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[4]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[5]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[6]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[7]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[8]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[13]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[18]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[19]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (67)
  • HTML views (166)
  • Cited by (0)

Other articles
by authors

[Back to Top]