The time at which a one-dimensional continuous strong Markov process attains a boundary point of its state space is a discontinuous path functional and it is, therefore, unclear whether the exit time can be approximated by hitting times of approximations of the process. We prove a functional limit theorem for approximating weakly both the paths of the Markov process and its exit times. In contrast to the functional limit theorem in [
Citation: |
[1] |
V. M. Abramov, F. C. Klebaner and R. S. Liptser, The Euler-Maruyama approximations for the CEV model, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 1-14.
doi: 10.3934/dcdsb.2011.16.1.![]() ![]() ![]() |
[2] |
S. Ankirchner, T. Kruse and M. Urusov, Numerical approximation of irregular SDEs via Skorokhod embeddings, J. Math. Anal. Appl., 440 (2016), 692-715.
doi: 10.1016/j.jmaa.2016.03.055.![]() ![]() ![]() |
[3] |
S. Ankirchner, T. Kruse and M. Urusov, A functional limit theorem for coin tossing Markov chains, Preprint, arXiv: 1902.06249.
![]() |
[4] |
S. Ankirchner, T. Kruse and M. Urusov, Wasserstein convergence rates for random bit approximations of continuous markov processes, Preprint, arXiv: 1903.07880.
![]() |
[5] |
R. F. Bass, A stochastic differential equation with a sticky point, Electron. J. Probab., 19 (2014), 22pp.
doi: 10.1214/EJP.v19-2350.![]() ![]() ![]() |
[6] |
A. Beskos, O. Papaspiliopoulos and G. O. Roberts, Retrospective exact simulation of diffusion sample paths with applications, Bernoulli, 12 (2006), 1077-1098.
![]() ![]() |
[7] |
B. Bouchard, S. Geiss and E. Gobet, First time to exit of a continuous Itȏ process: General moment estimates and $L_1$-convergence rate for discrete time approximations, Bernoulli, 23 (2017), 1631-1662.
doi: 10.3150/15-BEJ791.![]() ![]() ![]() |
[8] |
L. Breiman, Probability, vol. 7 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992, Corrected reprint of the 1968 original.
doi: 10.1137/1.9781611971286.![]() ![]() ![]() |
[9] |
C. Bruggeman and J. Ruf, A one-dimensional diffusion hits points fast, Electron. Commun. Probab., 21 (2016), Paper No. 22, 7pp.
doi: 10.1214/16-ECP4544.![]() ![]() ![]() |
[10] |
P. Chigansky and F. C. Klebaner, The Euler-Maruyama approximation for the absorption time of the CEV diffusion, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1455-1471.
doi: 10.3934/dcdsb.2012.17.1455.![]() ![]() ![]() |
[11] |
M. Deaconu and S. Herrmann, Hitting time for Bessel processes—walk on moving spheres algorithm (WoMS), Ann. Appl. Probab., 23 (2013), 2259-2289.
doi: 10.1214/12-AAP900.![]() ![]() ![]() |
[12] |
M. Deaconu and S. Herrmann, Simulation of hitting times for Bessel processes with non-integer dimension, Bernoulli, 23 (2017), 3744-3771.
doi: 10.3150/16-BEJ866.![]() ![]() ![]() |
[13] |
H.-J. Engelbert and G. Peskir, Stochastic differential equations for sticky Brownian motion, Stochastics, 86 (2014), 993-1021.
doi: 10.1080/17442508.2014.899600.![]() ![]() ![]() |
[14] |
H.-J. Engelbert and W. Schmidt, On solutions of one-dimensional stochastic differential equations without drift, Z. Wahrsch. Verw. Gebiete, 68 (1985), 287-314.
doi: 10.1007/BF00532642.![]() ![]() ![]() |
[15] |
S. N. Ethier, Limit theorems for absorption times of genetic models, Ann. Probab., 7 (1979), 622–638, http://links.jstor.org/sici?sici=0091-1798(197908)7:4<622:LTFATO>2.0.CO;2-Q&origin=MSN.
doi: 10.1214/aop/1176994986.![]() ![]() ![]() |
[16] |
I. Gyöngy, A note on Euler's approximations, Potential Analysis, 8 (1998), 205-216.
doi: 10.1023/A:1008605221617.![]() ![]() ![]() |
[17] |
H. Hajri, M. Caglar and M. Arnaudon, Application of stochastic flows to the sticky Brownian motion equation, Electron. Commun. Probab., 22 (2017), Paper No. 3, 10pp.
doi: 10.1214/16-ECP37.![]() ![]() ![]() |
[18] |
S. Herrmann and C. Zucca, Exact simulation of the first-passage time of diffusions, J. Sci. Comput., 79 (2019), 1477–1504, arXiv: 1705.06881v1.
doi: 10.1007/s10915-018-00900-3.![]() ![]() ![]() |
[19] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, vol. 113 of Graduate Texts in Mathematics, 2nd edition, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0949-2.![]() ![]() ![]() |
[20] |
I. Karatzas and J. Ruf, Distribution of the time to explosion for one-dimensional diffusions, Probab. Theory Related Fields, 164 (2016), 1027-1069.
doi: 10.1007/s00440-015-0625-9.![]() ![]() ![]() |
[21] |
I. Karatzas, A. N. Shiryaev and M. Shkolnikov, On the one-sided Tanaka equation with drift, Electron. Commun. Probab., 16 (2011), 664-677.
doi: 10.1214/ECP.v16-1665.![]() ![]() ![]() |
[22] |
D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, vol. 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edition, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-06400-9.![]() ![]() ![]() |
[23] |
L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales. Vol. 2, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000, Itô calculus, Reprint of the second (1994) edition.
doi: 10.1017/CBO9781107590120.![]() ![]() ![]() |
[24] |
D. Taguchi and A. Tanaka, On the Euler–Maruyama scheme for degenerate stochastic differential equations with non-sticky boundary condition, Preprint, arXiv: 1902.05712.
![]() |
[25] |
L. Yan, The Euler scheme with irregular coefficients, The Annals of Probability, 30 (2002), 1172-1194.
doi: 10.1214/aop/1029867124.![]() ![]() ![]() |