doi: 10.3934/dcdsb.2020079

Generalized solutions to models of inviscid fluids

1. 

Department of Mathematics, Heriot-Watt University, Riccarton Edinburgh EH14 4AS, UK

2. 

Institute of Mathematics AS CR, Žitná 25,115 67 Praha, Czech Republic and Institute of Mathematics, TU Berlin, Strasse des 17.Juni, Berlin, Germany

3. 

Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany

M.H. gratefully acknowledges the financial support by the German Science Foundation DFG via the Collaborative Research Center SFB1283

Received  July 2019 Revised  December 2019 Published  January 2020

Fund Project: The research of E.F. leading to these results has received funding from the Czech Sciences Foundation (GAČR), Grant Agreement 18–05974S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840.

We discuss several approaches to generalized solutions of problems describing the motion of inviscid fluids. We propose a new concept of dissipative solution to the compressible Euler system based on a careful analysis of possible oscillations and/or concentrations in the associated generating sequence. Unlike the conventional measure–valued solutions or rather their expected values, the dissipative solutions comply with a natural compatibility condition – they are classical solutions as long as they enjoy a certain degree of smoothness.

Citation: Dominic Breit, Eduard Feireisl, Martina Hofmanová. Generalized solutions to models of inviscid fluids. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020079
References:
[1]

J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures, J. Convex Anal., 4 (1997), 129-147.   Google Scholar

[2]

D. Basarić, Vanishing viscosity limit for the compressible Navier–Stokes system via measure-valued solutions, arXive Preprint Series, arXiv: 1903.05886, 2019. Google Scholar

[3]

D. Breit, E. Feireisl and M. Hofmanová, Dissipative solutions and semiflow selection for the complete Euler system, Commun. Math. Phys. DOI:10.1007/s00220-019-03662-7/ArXive PreprintSeries, arXiv: 1904. 00622, 2019. Google Scholar

[4]

D. Breit, E. Feireisl and M. Hofmanová, Solution semiflow to the isentropic Euler system, Arch. Rational Mech. Anal. DOI: 10.1007/s00205-019-01420-6 Google Scholar

[5]

J. E. Cardona and L. Kapitanskii, Semiflow selection and Markov selection theorems, arXive Preprint Series, arXiv: 1707.04778v1, 2017. Google Scholar

[6]

G. Q. Chen and J. Glimm, Kolmogorov-type theory of compressible turbulence and inviscid limit of the Navier–Stokes equations in ${R}^3$, Phys. D, 400 (2019), 132138, 10 pp, arXiv: 1809.09490. doi: 10.1016/j.physd.2019.06.004.  Google Scholar

[7]

E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Equ., 11 (2014), 493-519.  doi: 10.1142/S0219891614500143.  Google Scholar

[8]

E. ChiodaroliC. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math., 68 (2015), 1157-1190.  doi: 10.1002/cpa.21537.  Google Scholar

[9]

E. Chiodaroli and O. Kreml, On the energy dissipation rate of solutions to the compressible isentropic Euler system, Arch. Ration. Mech. Anal., 214 (2014), 1019-1049.  doi: 10.1007/s00205-014-0771-8.  Google Scholar

[10]

E. Chiodaroli, O. Kreml, V. Mácha and S. Schwarzacher, Non niqueness of admissible weak solutions to the compressible Euler equations with smooth initial data, arXive Preprint Series, arXiv: 1812.09917v1, 2019. Google Scholar

[11]

C. De LellisL. Székelyhidi and Jr ., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.  doi: 10.1007/s00205-008-0201-x.  Google Scholar

[12]

D. B. Ebin, Viscous fluids in a domain with frictionless boundary, Global Analysis - Analysis on Manifolds, H. Kurke, J. Mecke, H. Triebel, R. Thiele Editors, Teubner-Texte zur Mathematik 57, Teubner, Leipzig, 1983, 93–110. Google Scholar

[13]

E. Feireisl, S. S. Ghoshal and A. Jana, On uniqueness of dissipative solutions to the isentropic Euler system, Comm. Partial Differential Equations, 44 (2019), 1285–1298, arXiv: 1903.11687. doi: 10.1080/03605302.2019.1629958.  Google Scholar

[14]

E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier–Stokes system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 141, 20 pp. doi: 10.1007/s00526-016-1089-1.  Google Scholar

[15]

E. FeireislP. GwiazdaA. Świerczewska-Gwiazda and E. Wiedemann, Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 223 (2017), 1375-1395.  doi: 10.1007/s00205-016-1060-5.  Google Scholar

[16]

E. Feireisl and M. Hofmanová, On convergence of approximate solutions to the compressible Euler system, arXive Preprint Series, arXiv: 1905.02548, 2019. Google Scholar

[17]

E. Feireisl, C. Klingenberg, O. Kreml and S. Markfelder, On oscillatory solutions to the complete Euler system, arXive Preprint Series, arXiv: 1710.10918, 2017. Google Scholar

[18]

E. FeireislŠ. Matušů-NečasováH. Petzeltová and I. Straškraba, On the motion of a viscous compressible flow driven by a time-periodic external flow, Arch. Rational Mech. Anal., 149 (1999), 69-96.  doi: 10.1007/s002050050168.  Google Scholar

[19]

P. GwiazdaA. Świerczewska-Gwiazda and E. Wiedemann, Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28 (2015), 3873-3890.  doi: 10.1088/0951-7715/28/11/3873.  Google Scholar

[20]

N. V. Krylov, The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 691-708.   Google Scholar

[21]

T. LuoC. Xie and Z. Xin, Non-uniqueness of admissible weak solutions to compressible Euler systems with source terms, Adv. Math., 291 (2016), 542-583.  doi: 10.1016/j.aim.2015.12.027.  Google Scholar

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[23]

A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion, Publ. RIMS Kyoto Univ., 21 (1981), 839-859.  doi: 10.1215/kjm/1250521916.  Google Scholar

show all references

References:
[1]

J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures, J. Convex Anal., 4 (1997), 129-147.   Google Scholar

[2]

D. Basarić, Vanishing viscosity limit for the compressible Navier–Stokes system via measure-valued solutions, arXive Preprint Series, arXiv: 1903.05886, 2019. Google Scholar

[3]

D. Breit, E. Feireisl and M. Hofmanová, Dissipative solutions and semiflow selection for the complete Euler system, Commun. Math. Phys. DOI:10.1007/s00220-019-03662-7/ArXive PreprintSeries, arXiv: 1904. 00622, 2019. Google Scholar

[4]

D. Breit, E. Feireisl and M. Hofmanová, Solution semiflow to the isentropic Euler system, Arch. Rational Mech. Anal. DOI: 10.1007/s00205-019-01420-6 Google Scholar

[5]

J. E. Cardona and L. Kapitanskii, Semiflow selection and Markov selection theorems, arXive Preprint Series, arXiv: 1707.04778v1, 2017. Google Scholar

[6]

G. Q. Chen and J. Glimm, Kolmogorov-type theory of compressible turbulence and inviscid limit of the Navier–Stokes equations in ${R}^3$, Phys. D, 400 (2019), 132138, 10 pp, arXiv: 1809.09490. doi: 10.1016/j.physd.2019.06.004.  Google Scholar

[7]

E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Equ., 11 (2014), 493-519.  doi: 10.1142/S0219891614500143.  Google Scholar

[8]

E. ChiodaroliC. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math., 68 (2015), 1157-1190.  doi: 10.1002/cpa.21537.  Google Scholar

[9]

E. Chiodaroli and O. Kreml, On the energy dissipation rate of solutions to the compressible isentropic Euler system, Arch. Ration. Mech. Anal., 214 (2014), 1019-1049.  doi: 10.1007/s00205-014-0771-8.  Google Scholar

[10]

E. Chiodaroli, O. Kreml, V. Mácha and S. Schwarzacher, Non niqueness of admissible weak solutions to the compressible Euler equations with smooth initial data, arXive Preprint Series, arXiv: 1812.09917v1, 2019. Google Scholar

[11]

C. De LellisL. Székelyhidi and Jr ., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.  doi: 10.1007/s00205-008-0201-x.  Google Scholar

[12]

D. B. Ebin, Viscous fluids in a domain with frictionless boundary, Global Analysis - Analysis on Manifolds, H. Kurke, J. Mecke, H. Triebel, R. Thiele Editors, Teubner-Texte zur Mathematik 57, Teubner, Leipzig, 1983, 93–110. Google Scholar

[13]

E. Feireisl, S. S. Ghoshal and A. Jana, On uniqueness of dissipative solutions to the isentropic Euler system, Comm. Partial Differential Equations, 44 (2019), 1285–1298, arXiv: 1903.11687. doi: 10.1080/03605302.2019.1629958.  Google Scholar

[14]

E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier–Stokes system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 141, 20 pp. doi: 10.1007/s00526-016-1089-1.  Google Scholar

[15]

E. FeireislP. GwiazdaA. Świerczewska-Gwiazda and E. Wiedemann, Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 223 (2017), 1375-1395.  doi: 10.1007/s00205-016-1060-5.  Google Scholar

[16]

E. Feireisl and M. Hofmanová, On convergence of approximate solutions to the compressible Euler system, arXive Preprint Series, arXiv: 1905.02548, 2019. Google Scholar

[17]

E. Feireisl, C. Klingenberg, O. Kreml and S. Markfelder, On oscillatory solutions to the complete Euler system, arXive Preprint Series, arXiv: 1710.10918, 2017. Google Scholar

[18]

E. FeireislŠ. Matušů-NečasováH. Petzeltová and I. Straškraba, On the motion of a viscous compressible flow driven by a time-periodic external flow, Arch. Rational Mech. Anal., 149 (1999), 69-96.  doi: 10.1007/s002050050168.  Google Scholar

[19]

P. GwiazdaA. Świerczewska-Gwiazda and E. Wiedemann, Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28 (2015), 3873-3890.  doi: 10.1088/0951-7715/28/11/3873.  Google Scholar

[20]

N. V. Krylov, The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 691-708.   Google Scholar

[21]

T. LuoC. Xie and Z. Xin, Non-uniqueness of admissible weak solutions to compressible Euler systems with source terms, Adv. Math., 291 (2016), 542-583.  doi: 10.1016/j.aim.2015.12.027.  Google Scholar

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[23]

A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion, Publ. RIMS Kyoto Univ., 21 (1981), 839-859.  doi: 10.1215/kjm/1250521916.  Google Scholar

[1]

Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919

[2]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[3]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[4]

Adnan H. Sabuwala, Doreen De Leon. Particular solution to the Euler-Cauchy equation with polynomial non-homegeneities. Conference Publications, 2011, 2011 (Special) : 1271-1278. doi: 10.3934/proc.2011.2011.1271

[5]

Toyohiko Aiki, Adrian Muntean. On uniqueness of a weak solution of one-dimensional concrete carbonation problem. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1345-1365. doi: 10.3934/dcds.2011.29.1345

[6]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[7]

Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1335-1350. doi: 10.3934/cpaa.2016.15.1335

[8]

Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861

[9]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[10]

Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357

[11]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[12]

Jutamas Kerdkaew, Rabian Wangkeeree. Characterizing robust weak sharp solution sets of convex optimization problems with uncertainty. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-23. doi: 10.3934/jimo.2019074

[13]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations & Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

[14]

Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193

[15]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[16]

Ken Shirakawa, Hiroshi Watanabe. Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 139-159. doi: 10.3934/dcdss.2014.7.139

[17]

Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230

[18]

Aleksa Srdanov, Radiša Stefanović, Aleksandra Janković, Dragan Milovanović. "Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns. Mathematical Foundations of Computing, 2019, 2 (2) : 83-93. doi: 10.3934/mfc.2019007

[19]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

[20]

H. M. Yin. Optimal regularity of solution to a degenerate elliptic system arising in electromagnetic fields. Communications on Pure & Applied Analysis, 2002, 1 (1) : 127-134. doi: 10.3934/cpaa.2002.1.127

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (21)
  • HTML views (83)
  • Cited by (0)

[Back to Top]