-
Previous Article
On the 1D modeling of fluid flowing through a Junction
- DCDS-B Home
- This Issue
-
Next Article
Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media
Exact controllability of the linear Zakharov-Kuznetsov equation
1. | School of Mathematics and Statistics, Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, 130024, China |
2a. | TAG_SUP Université du Littoral Côte d'Opale, Laboratoire de Mathématiques Pures et Appliquées J. Liouville, BP 699, F-62228 Calais, France |
2b. | TAG_SUP CNRS FR 2956, France |
We consider the linear Zakharov-Kuznetsov equation on a rectangle with a left Dirichlet boundary control. Using the flatness approach, we prove the null controllability of that equation and provide a space of analytic reachable states.
References:
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
![]() |
[2] |
E. Cerpa,
Control of a Korteweg-de Vries equation: A tutorial, Math. Control Relat. Fields, 4 (2014), 45-99.
doi: 10.3934/mcrf.2014.4.45. |
[3] |
M. Chen,
Unique continuation property for the Zakharov-Kuznetsov equation, Comput. Math. Appl., 77 (2019), 1273-1281.
doi: 10.1016/j.camwa.2018.11.002. |
[4] |
G. G. Doronin and N. A. Larkin,
Stabilization for the linear Zakharov-Kuznetsov equation without critical size restrictions, J. Math. Anal. Appl., 428 (2015), 337-355.
doi: 10.1016/j.jmaa.2015.03.010. |
[5] |
G. G. Doronin and N. A. Larkin,
Stabilization of regular solutions for the Zakharov-Kuznetsov equation posed on bounded rectangles and on a strip, Proc. Edinb. Math. Soc., 58 (2015), 661-682.
doi: 10.1017/S0013091514000248. |
[6] |
A. V. Faminski,
The Cauchy problem for the Zakharov-Kuznetsov equation, Differential Equ., 31 (1995), 1002-1012.
|
[7] |
A. V. Faminskii,
Initial-boundary value problems in a rectangle for two-dimensional Zakharov-Kuznetsov equation, J. Math. Anal. Appl., 463 (2018), 760-793.
doi: 10.1016/j.jmaa.2018.03.048. |
[8] |
O. Glass and S. Guerrero,
Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymptotic Analysis, 60 (2008), 61-100.
doi: 10.3233/ASY-2008-0900. |
[9] |
C. Laurent and L. Rosier, Exact controllability of nonlinear heat equations in spaces of analytic functions, preprint, arXiv: 1812.06637v1. Google Scholar |
[10] |
F. Linares and J.-C. Saut,
The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dynam. Syst. A, 24 (2009), 547-565.
doi: 10.3934/dcds.2009.24.547. |
[11] |
F. Linares, A. Pastor and J.-C. Saut,
Well-posedness for the ZK equation in a cylinder and on the background of a KdV Soliton, Commun. PDEs, 35 (2010), 1674-1689.
doi: 10.1080/03605302.2010.494195. |
[12] |
P. Martin, L. Rosier and P. Rouchon,
On the reachable states for the boundary control of the heat equation, Appl. Math. Res. Express. AMRX, 2016 (2016), 181-216.
doi: 10.1093/amrx/abv013. |
[13] |
P. Martin, I. Rivas, L. Rosier and P. Rouchon,
Exact controllability of a linear Korteweg-de Vries equation by the flatness approach, SIAM J. Control Optim., 57 (2019), 2467-2486.
doi: 10.1137/18M1181390. |
[14] |
G. Perla-Menzala, L. Rosier, J.-C. Saut and R. Temam, Boundary control of the Zakharov-Kuznetsov equation, in preparation. Google Scholar |
[15] |
L. Rosier,
Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102. |
[16] |
L. Rosier,
Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var., 10 (2004), 346-380.
doi: 10.1051/cocv:2004012. |
[17] |
L. Rosier and B.-Y. Zhang,
Control and stabilization of the Korteweg-de Vries equation: recent progresses, J. Syst. Sci. Complex., 22 (2009), 647-682.
doi: 10.1007/s11424-009-9194-2. |
[18] |
J.-C. Saut and R. Temam,
An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Diff. Equations, 15 (2010), 1001-1031.
|
[19] |
J.-C. Saut, R. Temam and C. Wang, An initial and boundary-value problem for the Zakharov-Kuznestov equation in a bounded domain, Journal of Mathematical Physics, 53 (2012), 115612, 29pp.
doi: 10.1063/1.4752102. |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
![]() |
[2] |
E. Cerpa,
Control of a Korteweg-de Vries equation: A tutorial, Math. Control Relat. Fields, 4 (2014), 45-99.
doi: 10.3934/mcrf.2014.4.45. |
[3] |
M. Chen,
Unique continuation property for the Zakharov-Kuznetsov equation, Comput. Math. Appl., 77 (2019), 1273-1281.
doi: 10.1016/j.camwa.2018.11.002. |
[4] |
G. G. Doronin and N. A. Larkin,
Stabilization for the linear Zakharov-Kuznetsov equation without critical size restrictions, J. Math. Anal. Appl., 428 (2015), 337-355.
doi: 10.1016/j.jmaa.2015.03.010. |
[5] |
G. G. Doronin and N. A. Larkin,
Stabilization of regular solutions for the Zakharov-Kuznetsov equation posed on bounded rectangles and on a strip, Proc. Edinb. Math. Soc., 58 (2015), 661-682.
doi: 10.1017/S0013091514000248. |
[6] |
A. V. Faminski,
The Cauchy problem for the Zakharov-Kuznetsov equation, Differential Equ., 31 (1995), 1002-1012.
|
[7] |
A. V. Faminskii,
Initial-boundary value problems in a rectangle for two-dimensional Zakharov-Kuznetsov equation, J. Math. Anal. Appl., 463 (2018), 760-793.
doi: 10.1016/j.jmaa.2018.03.048. |
[8] |
O. Glass and S. Guerrero,
Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymptotic Analysis, 60 (2008), 61-100.
doi: 10.3233/ASY-2008-0900. |
[9] |
C. Laurent and L. Rosier, Exact controllability of nonlinear heat equations in spaces of analytic functions, preprint, arXiv: 1812.06637v1. Google Scholar |
[10] |
F. Linares and J.-C. Saut,
The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dynam. Syst. A, 24 (2009), 547-565.
doi: 10.3934/dcds.2009.24.547. |
[11] |
F. Linares, A. Pastor and J.-C. Saut,
Well-posedness for the ZK equation in a cylinder and on the background of a KdV Soliton, Commun. PDEs, 35 (2010), 1674-1689.
doi: 10.1080/03605302.2010.494195. |
[12] |
P. Martin, L. Rosier and P. Rouchon,
On the reachable states for the boundary control of the heat equation, Appl. Math. Res. Express. AMRX, 2016 (2016), 181-216.
doi: 10.1093/amrx/abv013. |
[13] |
P. Martin, I. Rivas, L. Rosier and P. Rouchon,
Exact controllability of a linear Korteweg-de Vries equation by the flatness approach, SIAM J. Control Optim., 57 (2019), 2467-2486.
doi: 10.1137/18M1181390. |
[14] |
G. Perla-Menzala, L. Rosier, J.-C. Saut and R. Temam, Boundary control of the Zakharov-Kuznetsov equation, in preparation. Google Scholar |
[15] |
L. Rosier,
Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102. |
[16] |
L. Rosier,
Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var., 10 (2004), 346-380.
doi: 10.1051/cocv:2004012. |
[17] |
L. Rosier and B.-Y. Zhang,
Control and stabilization of the Korteweg-de Vries equation: recent progresses, J. Syst. Sci. Complex., 22 (2009), 647-682.
doi: 10.1007/s11424-009-9194-2. |
[18] |
J.-C. Saut and R. Temam,
An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Diff. Equations, 15 (2010), 1001-1031.
|
[19] |
J.-C. Saut, R. Temam and C. Wang, An initial and boundary-value problem for the Zakharov-Kuznestov equation in a bounded domain, Journal of Mathematical Physics, 53 (2012), 115612, 29pp.
doi: 10.1063/1.4752102. |
[1] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
[2] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[3] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[4] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[5] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[6] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[7] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[8] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[9] |
Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098 |
[10] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[11] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[12] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[13] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[14] |
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262 |
[15] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[16] |
Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020055 |
[17] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[18] |
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297 |
[19] |
Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069 |
[20] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]