April  2021, 26(4): 2085-2113. doi: 10.3934/dcdsb.2020081

A spatially heterogeneous predator-prey model

Instituto de Matemática Interdisciplinar (IMI), Departamento de Análisis Matemático y Matemática Aplicada, Universidad Complutense de Madrid, Madrid, 28040, Spain

* Corresponding author

This paper is dedicated to Sze-Bi Hsu, with admiration for his pioneering mathematical work and our deepest gratitude for his friendship. At the occasion of his 70th anniversary

Received  April 2019 Published  April 2021 Early access  January 2020

Fund Project: This paper has been supported by the IMI of the Complutense University of Madrid and the Ministry of Science and Universities of Spain under Research Grant PGC2018-097104-B-100. The second author, ORCID: 0000-0003-1184-6231, has been also supported by contract CT42/18-CT43/18 of Complutense University of Madrid

This paper introduces a spatially heterogeneous diffusive predator–prey model unifying the classical Lotka–Volterra and Holling–Tanner ones through a prey saturation coefficient, $ m(x) $, which is spatially heterogenous and it is allowed to 'degenerate'. Thus, in some patches of the territory the species can interact according to a Lotka–Volterra kinetics, while in others the prey saturation effects play a significant role on the dynamics of the species. As we are working under general mixed boundary conditions of non-classical type, we must invoke to some very recent technical devices to get some of the main results of this paper.

Citation: Julián López-Gómez, Eduardo Muñoz-Hernández. A spatially heterogeneous predator-prey model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2085-2113. doi: 10.3934/dcdsb.2020081
References:
[1]

D. Aleja, I. Antón and J. López-Gómez, Global structure of the periodic-positive solutions for a general class of periodic-parabolic logistic equations with indefinite weights, Submitted. Google Scholar

[2]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Diff. Eqns., 146 (1998), 336-374.  doi: 10.1006/jdeq.1998.3440.  Google Scholar

[3]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Appl. Maths., 47 (1994), 72-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[4]

S. Cano-Casanova and J. López-Gómez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Diff. Eqns., 178 (2002), 123-211.  doi: 10.1006/jdeq.2000.4003.  Google Scholar

[5]

A. CasalC. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Diff. Int. Eqns., 7 (1994), 411-439.   Google Scholar

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[7]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rat. Mech. Anal., 52 (1973), 161-180.  doi: 10.1007/BF00282325.  Google Scholar

[8]

E. N. DancerJ. López-Gómez and R. Ortega, On the spectrum of some linear noncooperative elliptic systems with radial symmetry, Diff. Int. Eqns., 8 (1995), 515-523.   Google Scholar

[9]

D. Daners and J. López-Gómez, Global dynamics of generalized logistic equations, Adv. Nonl. Studies, 18 (2018), 217-236.   Google Scholar

[10]

Y. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Diff. Eqns., 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[11]

Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. math. Soc., 349 (1997), 2443-2475.   Google Scholar

[12]

Y. Du and Y. Lou, $S$-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Diff. Eqns., 144 (1998), 390-440.  doi: 10.1006/jdeq.1997.3394.  Google Scholar

[13]

Y. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Diff. Eqns., 229 (2006), 63-91.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[14]

Y. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593.  doi: 10.1090/S0002-9947-07-04262-6.  Google Scholar

[15]

X. FengY. Song and X. An, Dynamic behavior analysis of a prey-predator model with ratio-dependent Monod–Haldane functional response, Open Math., 16 (2018), 623-635.   Google Scholar

[16]

S. Fernández-Rincón and J. López-Gómez, The singular perturbation problem for a class of generalized logistic equations under non-classical mixed boundary conditions, Adv. Nonl. Studies, 19 (2019), 1-27.   Google Scholar

[17]

J. M. FraileP. Koch MedinaJ. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation, J. Diff. Eqns., 127 (1995), 295-319.  doi: 10.1006/jdeq.1996.0071.  Google Scholar

[18]

H. Freedman, Deterministic Mathematical Models in Population Biology, Marcel and Dekker, New York, 1980.  Google Scholar

[19]

G. Guo and J. Wu, Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response, Nonl. Anal., 72 (2010), 1632-1646.  doi: 10.1016/j.na.2009.09.003.  Google Scholar

[20]

G. Guo and J. Wu, The effect of mutual interference between predators on a predator-prey model with diffusion, J. Math. Anal. Appl., 389 (2012), 179-194.  doi: 10.1016/j.jmaa.2011.11.044.  Google Scholar

[21]

S. B. Hsu, On global stability of a predator-prey system, Math. Biosc., 39 (1978), 1-10.  doi: 10.1016/0025-5564(78)90025-1.  Google Scholar

[22]

S. B. Hsu and T. W. Hwang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.  doi: 10.1137/S0036139993253201.  Google Scholar

[23]

Y. JiaJ. Wu and H. K. Xu, Spatial pattern in an ecosystem of phytoplankton-nutrient from remote sensing, J. Math. Anal. Appl., 402 (2013), 23-34.  doi: 10.1016/j.jmaa.2012.12.071.  Google Scholar

[24]

H. Jiang and L. Wang, Analysis of steady-state for variable territory model with limited self-limitation, Acta Appl. Math., 148 (2017), 103-120.  doi: 10.1007/s10440-016-0080-3.  Google Scholar

[25]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, J. Diff. Eqns., 231 (2006), 534-550.  doi: 10.1016/j.jde.2006.08.001.  Google Scholar

[26]

W. Ko and K. Ryu, Coexistence states of a predator-prey system with non-monotonic functional response, Nonl. Anal. RWA, 8 (2007), 769-786.  doi: 10.1016/j.nonrwa.2006.03.003.  Google Scholar

[27]

W. Ko and K. Ryu, A qualitative study on general Gause-type predator-prey models with constant diffusion rates, J. Math. Anal. Appns., 344 (2008), 217-230.  doi: 10.1016/j.jmaa.2008.03.006.  Google Scholar

[28]

S. LiJ. Wu and Y. Dong, Effects of degeneracy and response in a diffusion predator-prey model, Nonlinearity, 31 (2018), 1461-1483.  doi: 10.1088/1361-6544/aaa2de.  Google Scholar

[29]

S. LiJ. Wu and Y. Dong, Effects of degeneracy in a diffusion predator-prey model with Holling type-Ⅱ functional response, Nonl. Anal. RWA, 43 (2018), 78-95.  doi: 10.1016/j.nonrwa.2018.02.003.  Google Scholar

[30]

J. López-Gómez, Positive periodic solutions of Lotka–Volterra reaction-diffusion systems, Diff. Int. Eqns., 5 (1992), 55-72.   Google Scholar

[31]

J. López-Gómez, Nonlinear eigenvalues and global bifurcation. Application to the search of positive solutions for general Lotka-Volterra Reaction-Diffusion systems with two species, Diff. Int. Eqns., 7 (1994), 1427-1452.   Google Scholar

[32]

J. López-Gómez, A bridge between operator theory and mathematical biology, Fields Inst. Comm., 25 (2000), 383-397.   Google Scholar

[33] J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Research Notes in Mathematics 426, Chapman & Hall/CRC Press, Boca Raton, FL, 2001.  doi: 10.1201/9781420035506.  Google Scholar
[34]

J. López-Gómez, Classifying smooth supersolutions for a general class of elliptic boundary value problems, Adv. Diff. Eqns., 8 (2003), 1025-1042.   Google Scholar

[35]

J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific, Singapore, 2013. doi: 10.1142/8664.  Google Scholar

[36] J. López-Gómez, Metasolutions of Parabolic Equations in Population Dynamics, CRC Press, Boca Raton, 2016.   Google Scholar
[37]

J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly elliptic systems and some applications, Diff. Int. Eqns, 7 (1994), 383-398.   Google Scholar

[38]

J. López-Gómez and E. Muñoz-Hernández, Global structure of subharmonics in a class of periodic predator-prey models, Nonlinearity, 33 (2020), 34-71.   Google Scholar

[39]

J. López-Gómez and R. M. Pardo, Coexistence regions in Lotka-Volterra systems with diffusion, Nonl. Anal., 19 (1992), 11-28.  doi: 10.1016/0362-546X(92)90027-C.  Google Scholar

[40]

J. López-Gómez and R. M. Pardo, The existence and the uniqueness for the predator-prey model with diffusion, Diff. Int. Eqns., 6 (1993), 1025-1031.   Google Scholar

[41]

J. López-Gómez and R. M. Pardo, Invertibility of linear noncooperative elliptic systems, Nonl. Anal., 31 (1998), 687-699.  doi: 10.1016/S0362-546X(97)00640-8.  Google Scholar

[42]

J. López-Gómez, A bridge between operator theory and mathematical biology, Fields Inst. Comm., 25 (2000), 383-397.   Google Scholar

[43] R. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1974.   Google Scholar
[44]

H. Nie and J. Wu, Multiplicity and stability of a predator-prey model with non-monotonic conversion rate, Nonl. Anal. RWA, 10 (2009), 154-171.  doi: 10.1016/j.nonrwa.2007.08.020.  Google Scholar

[45]

P. Y. H. Pang and M. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Royal Soc. Edinburgh, 133 (2003), 919-942.  doi: 10.1017/S0308210500002742.  Google Scholar

[46]

P. Y. H. Pang and M. Wang, Non-constant positive steady-states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London Math. Soc., 88 (2004), 135-157.  doi: 10.1112/S0024611503014321.  Google Scholar

[47]

R. PengM. X. Wang and W. Y. Chen, Positive steady-states of a predator-prey model with diffusion and non-monotonic conversion rate, Acta Math. Sinica, 23 (2007), 749-760.  doi: 10.1007/s10114-005-0789-9.  Google Scholar

[48]

K. Ryu and I. Ahn, Positive solutions for ratio-dependent predator-prey interaction systems, J. Diff. Eqns., 218 (2005), 117-135.  doi: 10.1016/j.jde.2005.06.020.  Google Scholar

[49]

M. X. Wang and Q. Wu, Positive solutions fo a predator-prey model with predator saturation and competition, J. Math. Anal. Appl., 345 (2008), 708-718.  doi: 10.1016/j.jmaa.2008.04.054.  Google Scholar

[50]

H. YuanJ. WuY. Jia and H. Nie, Coexistence states of a predator-prey model with cross-diffusion, Nonl. Anal. RWA, 41 (2018), 179-203.  doi: 10.1016/j.nonrwa.2017.10.009.  Google Scholar

[51]

X. ZengW. Zeng and L. Liu, Effects of the protection zone on coexistence of the species for a ratio-dependent predator-prey model, J. Math. Anal. Appl., 462 (2018), 1605-1626.  doi: 10.1016/j.jmaa.2018.02.060.  Google Scholar

[52]

J. Zhou and C. Mu, Coexistence states of a Holling type-Ⅱ predator-prey system, J. Math. Anal. Appl., 369 (2010), 555-563.  doi: 10.1016/j.jmaa.2010.04.001.  Google Scholar

[53]

J. Zhou and C. Mu, Coexistence of a diffusive predator-prey model with Holling-type Ⅱ functional response and density dependent mortality, J. Math. Anal. Appl., 385 (2012), 913-927.  doi: 10.1016/j.jmaa.2011.07.027.  Google Scholar

[54]

J. Zhou and J. P. Shi, The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie–Gower predator-prey model with Holling type-Ⅱ functional responses, J. Math. Anal. Appl., 405 (2013), 618-630.  doi: 10.1016/j.jmaa.2013.03.064.  Google Scholar

show all references

This paper is dedicated to Sze-Bi Hsu, with admiration for his pioneering mathematical work and our deepest gratitude for his friendship. At the occasion of his 70th anniversary

References:
[1]

D. Aleja, I. Antón and J. López-Gómez, Global structure of the periodic-positive solutions for a general class of periodic-parabolic logistic equations with indefinite weights, Submitted. Google Scholar

[2]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Diff. Eqns., 146 (1998), 336-374.  doi: 10.1006/jdeq.1998.3440.  Google Scholar

[3]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Appl. Maths., 47 (1994), 72-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[4]

S. Cano-Casanova and J. López-Gómez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Diff. Eqns., 178 (2002), 123-211.  doi: 10.1006/jdeq.2000.4003.  Google Scholar

[5]

A. CasalC. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Diff. Int. Eqns., 7 (1994), 411-439.   Google Scholar

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[7]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rat. Mech. Anal., 52 (1973), 161-180.  doi: 10.1007/BF00282325.  Google Scholar

[8]

E. N. DancerJ. López-Gómez and R. Ortega, On the spectrum of some linear noncooperative elliptic systems with radial symmetry, Diff. Int. Eqns., 8 (1995), 515-523.   Google Scholar

[9]

D. Daners and J. López-Gómez, Global dynamics of generalized logistic equations, Adv. Nonl. Studies, 18 (2018), 217-236.   Google Scholar

[10]

Y. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Diff. Eqns., 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[11]

Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. math. Soc., 349 (1997), 2443-2475.   Google Scholar

[12]

Y. Du and Y. Lou, $S$-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Diff. Eqns., 144 (1998), 390-440.  doi: 10.1006/jdeq.1997.3394.  Google Scholar

[13]

Y. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Diff. Eqns., 229 (2006), 63-91.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[14]

Y. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593.  doi: 10.1090/S0002-9947-07-04262-6.  Google Scholar

[15]

X. FengY. Song and X. An, Dynamic behavior analysis of a prey-predator model with ratio-dependent Monod–Haldane functional response, Open Math., 16 (2018), 623-635.   Google Scholar

[16]

S. Fernández-Rincón and J. López-Gómez, The singular perturbation problem for a class of generalized logistic equations under non-classical mixed boundary conditions, Adv. Nonl. Studies, 19 (2019), 1-27.   Google Scholar

[17]

J. M. FraileP. Koch MedinaJ. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation, J. Diff. Eqns., 127 (1995), 295-319.  doi: 10.1006/jdeq.1996.0071.  Google Scholar

[18]

H. Freedman, Deterministic Mathematical Models in Population Biology, Marcel and Dekker, New York, 1980.  Google Scholar

[19]

G. Guo and J. Wu, Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response, Nonl. Anal., 72 (2010), 1632-1646.  doi: 10.1016/j.na.2009.09.003.  Google Scholar

[20]

G. Guo and J. Wu, The effect of mutual interference between predators on a predator-prey model with diffusion, J. Math. Anal. Appl., 389 (2012), 179-194.  doi: 10.1016/j.jmaa.2011.11.044.  Google Scholar

[21]

S. B. Hsu, On global stability of a predator-prey system, Math. Biosc., 39 (1978), 1-10.  doi: 10.1016/0025-5564(78)90025-1.  Google Scholar

[22]

S. B. Hsu and T. W. Hwang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.  doi: 10.1137/S0036139993253201.  Google Scholar

[23]

Y. JiaJ. Wu and H. K. Xu, Spatial pattern in an ecosystem of phytoplankton-nutrient from remote sensing, J. Math. Anal. Appl., 402 (2013), 23-34.  doi: 10.1016/j.jmaa.2012.12.071.  Google Scholar

[24]

H. Jiang and L. Wang, Analysis of steady-state for variable territory model with limited self-limitation, Acta Appl. Math., 148 (2017), 103-120.  doi: 10.1007/s10440-016-0080-3.  Google Scholar

[25]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, J. Diff. Eqns., 231 (2006), 534-550.  doi: 10.1016/j.jde.2006.08.001.  Google Scholar

[26]

W. Ko and K. Ryu, Coexistence states of a predator-prey system with non-monotonic functional response, Nonl. Anal. RWA, 8 (2007), 769-786.  doi: 10.1016/j.nonrwa.2006.03.003.  Google Scholar

[27]

W. Ko and K. Ryu, A qualitative study on general Gause-type predator-prey models with constant diffusion rates, J. Math. Anal. Appns., 344 (2008), 217-230.  doi: 10.1016/j.jmaa.2008.03.006.  Google Scholar

[28]

S. LiJ. Wu and Y. Dong, Effects of degeneracy and response in a diffusion predator-prey model, Nonlinearity, 31 (2018), 1461-1483.  doi: 10.1088/1361-6544/aaa2de.  Google Scholar

[29]

S. LiJ. Wu and Y. Dong, Effects of degeneracy in a diffusion predator-prey model with Holling type-Ⅱ functional response, Nonl. Anal. RWA, 43 (2018), 78-95.  doi: 10.1016/j.nonrwa.2018.02.003.  Google Scholar

[30]

J. López-Gómez, Positive periodic solutions of Lotka–Volterra reaction-diffusion systems, Diff. Int. Eqns., 5 (1992), 55-72.   Google Scholar

[31]

J. López-Gómez, Nonlinear eigenvalues and global bifurcation. Application to the search of positive solutions for general Lotka-Volterra Reaction-Diffusion systems with two species, Diff. Int. Eqns., 7 (1994), 1427-1452.   Google Scholar

[32]

J. López-Gómez, A bridge between operator theory and mathematical biology, Fields Inst. Comm., 25 (2000), 383-397.   Google Scholar

[33] J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Research Notes in Mathematics 426, Chapman & Hall/CRC Press, Boca Raton, FL, 2001.  doi: 10.1201/9781420035506.  Google Scholar
[34]

J. López-Gómez, Classifying smooth supersolutions for a general class of elliptic boundary value problems, Adv. Diff. Eqns., 8 (2003), 1025-1042.   Google Scholar

[35]

J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific, Singapore, 2013. doi: 10.1142/8664.  Google Scholar

[36] J. López-Gómez, Metasolutions of Parabolic Equations in Population Dynamics, CRC Press, Boca Raton, 2016.   Google Scholar
[37]

J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly elliptic systems and some applications, Diff. Int. Eqns, 7 (1994), 383-398.   Google Scholar

[38]

J. López-Gómez and E. Muñoz-Hernández, Global structure of subharmonics in a class of periodic predator-prey models, Nonlinearity, 33 (2020), 34-71.   Google Scholar

[39]

J. López-Gómez and R. M. Pardo, Coexistence regions in Lotka-Volterra systems with diffusion, Nonl. Anal., 19 (1992), 11-28.  doi: 10.1016/0362-546X(92)90027-C.  Google Scholar

[40]

J. López-Gómez and R. M. Pardo, The existence and the uniqueness for the predator-prey model with diffusion, Diff. Int. Eqns., 6 (1993), 1025-1031.   Google Scholar

[41]

J. López-Gómez and R. M. Pardo, Invertibility of linear noncooperative elliptic systems, Nonl. Anal., 31 (1998), 687-699.  doi: 10.1016/S0362-546X(97)00640-8.  Google Scholar

[42]

J. López-Gómez, A bridge between operator theory and mathematical biology, Fields Inst. Comm., 25 (2000), 383-397.   Google Scholar

[43] R. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1974.   Google Scholar
[44]

H. Nie and J. Wu, Multiplicity and stability of a predator-prey model with non-monotonic conversion rate, Nonl. Anal. RWA, 10 (2009), 154-171.  doi: 10.1016/j.nonrwa.2007.08.020.  Google Scholar

[45]

P. Y. H. Pang and M. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Royal Soc. Edinburgh, 133 (2003), 919-942.  doi: 10.1017/S0308210500002742.  Google Scholar

[46]

P. Y. H. Pang and M. Wang, Non-constant positive steady-states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London Math. Soc., 88 (2004), 135-157.  doi: 10.1112/S0024611503014321.  Google Scholar

[47]

R. PengM. X. Wang and W. Y. Chen, Positive steady-states of a predator-prey model with diffusion and non-monotonic conversion rate, Acta Math. Sinica, 23 (2007), 749-760.  doi: 10.1007/s10114-005-0789-9.  Google Scholar

[48]

K. Ryu and I. Ahn, Positive solutions for ratio-dependent predator-prey interaction systems, J. Diff. Eqns., 218 (2005), 117-135.  doi: 10.1016/j.jde.2005.06.020.  Google Scholar

[49]

M. X. Wang and Q. Wu, Positive solutions fo a predator-prey model with predator saturation and competition, J. Math. Anal. Appl., 345 (2008), 708-718.  doi: 10.1016/j.jmaa.2008.04.054.  Google Scholar

[50]

H. YuanJ. WuY. Jia and H. Nie, Coexistence states of a predator-prey model with cross-diffusion, Nonl. Anal. RWA, 41 (2018), 179-203.  doi: 10.1016/j.nonrwa.2017.10.009.  Google Scholar

[51]

X. ZengW. Zeng and L. Liu, Effects of the protection zone on coexistence of the species for a ratio-dependent predator-prey model, J. Math. Anal. Appl., 462 (2018), 1605-1626.  doi: 10.1016/j.jmaa.2018.02.060.  Google Scholar

[52]

J. Zhou and C. Mu, Coexistence states of a Holling type-Ⅱ predator-prey system, J. Math. Anal. Appl., 369 (2010), 555-563.  doi: 10.1016/j.jmaa.2010.04.001.  Google Scholar

[53]

J. Zhou and C. Mu, Coexistence of a diffusive predator-prey model with Holling-type Ⅱ functional response and density dependent mortality, J. Math. Anal. Appl., 385 (2012), 913-927.  doi: 10.1016/j.jmaa.2011.07.027.  Google Scholar

[54]

J. Zhou and J. P. Shi, The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie–Gower predator-prey model with Holling type-Ⅱ functional responses, J. Math. Anal. Appl., 405 (2013), 618-630.  doi: 10.1016/j.jmaa.2013.03.064.  Google Scholar

Figure 1.  Stability of the semitrivial solutions
Figure 2.  Stability of $ (0, 0) $
Figure 3.  An admissible component $ \mathfrak{C} $
Figure 4.  By Theorem 5.1, (5) admits a coexistence state for each $ (\lambda, \mu) $ in the green region, while it cannot admit a coexistence state in the white one. Within the yellow region, (5) might admit, or not, a coexistence state as it will become apparent later
Figure 4 when $ \mathrm{Int\, }m^{-1}(0)\neq \emptyset $">Figure 5.  The coexistence wedges of Figure 4 when $ \mathrm{Int\, }m^{-1}(0)\neq \emptyset $
[1]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[2]

Willian Cintra, Carlos Alberto dos Santos, Jiazheng Zhou. Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021211

[3]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2239-2255. doi: 10.3934/dcdsb.2021007

[4]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[5]

P. Auger, N. H. Du, N. T. Hieu. Evolution of Lotka-Volterra predator-prey systems under telegraph noise. Mathematical Biosciences & Engineering, 2009, 6 (4) : 683-700. doi: 10.3934/mbe.2009.6.683

[6]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[7]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[8]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[9]

Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823

[10]

Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747

[11]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[12]

Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699

[13]

Tung Nguyen, Nar Rawal. Coexistence and extinction in Time-Periodic Volterra-Lotka type systems with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3799-3816. doi: 10.3934/dcdsb.2018080

[14]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[15]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[16]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[17]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[18]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[19]

Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1621-1628. doi: 10.3934/dcdss.2011.4.1621

[20]

Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (512)
  • HTML views (1318)
  • Cited by (0)

[Back to Top]