We study the dynamics of an inhomogeneous neuronal network parametrized by a real number $ \sigma $ and structured by the time elapsed since the last discharge. The dynamics are governed by the parabolic PDE which describes the probability density of neurons with elapsed time $ s $ after its last discharge. We prove existence and uniqueness of a solution to the model. Moreover, we show that under some conditions on the connectivity and the firing rate, the network exhibits total desynchronization.
Citation: |
[1] |
L. F. Abbott, Lapicque's introduction of the integrate-and-fire model neuron (1907), Brain Res. Bull., 50 (1999), 303-304.
![]() |
[2] |
P. C. Bressloff and J. M. Newby, Stochastic models of intracellular transport, Rev. Mod. Phys., 85 (2013), 135-196.
doi: 10.1103/RevModPhys.85.135.![]() ![]() |
[3] |
N. Brunel and V. Hakim, Fast global oscillations in networks of integrate-and-fire neurons with low firing rates, Neural Comput., 11 (1999), 1621-1671.
doi: 10.1162/089976699300016179.![]() ![]() |
[4] |
N. Brunel and M. C. W. van Rossum, Lapicque's 1907 paper: From frogs to integrate-and-fire, Biol. Cybernet., 97 (2007), 337-339.
doi: 10.1007/s00422-007-0190-0.![]() ![]() ![]() |
[5] |
M. J. Cáceres, J. A. Carrillo and B. Perthame, Analysis of nonlinear noisy integrate & fire neuron models: Blow-up and steady states, J. Math. Neurosci., 1 (2011), Art. 7, 33 pp.
doi: 10.1186/2190-8567-1-7.![]() ![]() ![]() |
[6] |
G. Dumont, J. Henry and C. O. Tarniceriu, Theoretical connections between mathematical neuronal models corresponding to different expressions of noise, J. Theoret. Biol., 406 (2016), 31-41.
doi: 10.1016/j.jtbi.2016.06.022.![]() ![]() ![]() |
[7] |
A. A. Faisal, L. P. J. Selen and D. M. Wolpert, Noise in the nervous system, Nat. Rev. Neurosci., 9 (2008), 292-303.
![]() |
[8] |
W. Gerstner, Time structure of the activity in neural network models, Phys. Rev. E, 51 (1995), 738-758.
doi: 10.1103/PhysRevE.51.738.![]() ![]() |
[9] |
W. Gerstner and W. M. Kistler, Spiking Neuron Models, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511815706.![]() ![]() ![]() |
[10] |
E. M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press, Cambridge, MA, 2007.
![]() ![]() |
[11] |
B. K. Kakumani and S. K. Tumuluri, On a nonlinear renewal equation with diffusion, Math. Methods Appl. Sci., 39 (2016), 697-708.
doi: 10.1002/mma.3511.![]() ![]() ![]() |
[12] |
M.-J. Kang, B. Perthame and D. Salort, Dynamics of time elapsed inhomogeneous neuron network model, C. R. Math. Acad. Sci. Paris, 353 (2015), 1111-1115.
doi: 10.1016/j.crma.2015.09.029.![]() ![]() ![]() |
[13] |
B. W. Knight, Dynamics of encoding in a population of neurons, J. Gen. Physiol., 59 (1972), 734-766.
doi: 10.1085/jgp.59.6.734.![]() ![]() |
[14] |
J.-L. Lions, Équations Différentielles Opérationnelles et Problèmes aux Limites, (French) [Die Grundlehren der mathematischen Wissenschaften], Bd. 111, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961.
![]() ![]() |
[15] |
A. Longtin, Neuronal noise, Scholarpedia 8 (2013), 1618.
doi: 10.4249/scholarpedia.1618.![]() ![]() |
[16] |
P. Michel, General relative entropy in a nonlinear McKendrick model, in Stochastic Analysis and Partial Differential Equations (eds. G.-Q. Chen, E. Hsu and M. Pinsky), Amer. Math. Soc., Providence, RI, 429 (2007), 205–232.
doi: 10.1090/conm/429/08238.![]() ![]() ![]() |
[17] |
P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering, C. R. Math. Acad. Sci. Paris, 338 (2004), 697-702.
doi: 10.1016/j.crma.2004.03.006.![]() ![]() ![]() |
[18] |
P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models, J. Math. Pures Appl., 84 (2005), 1235-1260.
doi: 10.1016/j.matpur.2005.04.001.![]() ![]() ![]() |
[19] |
S. Mischler, B. Perthame and L. Ryzhik, Stability in a nonlinear population maturation model, Math. Models Methods Appl. Sci., 12 (2002), 1751-1772.
doi: 10.1142/S021820250200232X.![]() ![]() ![]() |
[20] |
S. Mischler and Q. Weng, Relaxation in time elapsed neuron network models in the weak connectivity regime, Acta Appl. Math., 157 (2018), 45-74.
doi: 10.1007/s10440-018-0163-4.![]() ![]() ![]() |
[21] |
K. Pakdaman, B. Perthame and D. Salort, Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation, J. Math. Neurosci., 4 (2014), Art. 14, 26 pp.
doi: 10.1186/2190-8567-4-14.![]() ![]() ![]() |
[22] |
K. Pakdaman, B. Perthame and D. Salort, Dynamics of a structured neuron population, Nonlinearity, 23 (2010), 55-75.
doi: 10.1088/0951-7715/23/1/003.![]() ![]() ![]() |
[23] |
K. Pakdaman, B. Perthame and D. Salort, Relaxation and self-sustained oscillations in the time elapsed neuron network model, SIAM J. Appl. Math., 73 (2013), 1260-1279.
doi: 10.1137/110847962.![]() ![]() ![]() |
[24] |
D. H. Perkel, A computer program for simulating a network of interacting neurons I. Organization and physiological assumptions, Comput. Biomed. Res., 9 (1976), 31-43.
doi: 10.1016/0010-4809(76)90049-5.![]() ![]() |
[25] |
D. H. Perkel, A computer program for simulating a network of interacting neurons III. Applications, Comput. Biomed. Res., 9 (1976), 67-74.
doi: 10.1016/0010-4809(76)90051-3.![]() ![]() |
[26] |
D. H. Perkel and M. S. Smith, A computer program for simulating a network of interacting neurons II. Programming aspects, Comput. Biomed. Res., 9 (1976), 45-66.
doi: 10.1016/0010-4809(76)90050-1.![]() ![]() |
[27] |
B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007.
![]() ![]() |
[28] |
B. Perthame and S. K. Tumuluri, Nonlinear renewal equations, in Selected Topics in Cancer Modeling (eds. E. Angelis, M. A. J. Chaplain and N. Bellomo), {Model. Simul. Sci. Eng. Technol.}, Birkhäuser Boston, Boston, MA, (2008), 65–96.
![]() ![]() |
[29] |
J. Pham, K. Pakdaman, J. Champagnat and J.-F. Vibert, Activity in sparsely connected excitatory neural networks: Effect of connectivity, Neural Networks, 11 (1998), 415-434.
doi: 10.1016/S0893-6080(97)00153-6.![]() ![]() |
[30] |
J. Pham, K. Pakdaman and J.-F. Vibert, Noise-induced coherent oscillations in randomly connected neural networks, Phys. Rev. E, 58 (1998), 3610-3622.
doi: 10.1103/PhysRevE.58.3610.![]() ![]() |
[31] |
C. Quiñinao, A microscopic spiking neuronal network for the age-structured model, Acta Appl. Math., 146 (2016), 29-55.
doi: 10.1007/s10440-016-0056-3.![]() ![]() ![]() |
[32] |
M. N. Shadlen and W. T. Newsome, Noise, neural codes and cortical organization, Curr. Opin. Neurobiol., 4 (1994), 569-579.
doi: 10.1016/0959-4388(94)90059-0.![]() ![]() |
[33] |
W. R. Softky and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs, Journal of Neuroscience, 13 (1993), 334-350.
doi: 10.1523/JNEUROSCI.13-01-00334.1993.![]() ![]() |