\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behavior of solutions of a nonlinear degenerate chemotaxis model

  • * Corresponding author: Moustafa Ibrahim

    * Corresponding author: Moustafa Ibrahim 
Abstract / Introduction Full Text(HTML) Figure(12) Related Papers Cited by
  • Pattern formation in various biological systems has been attributed to Turing instabilities in systems of reaction-diffusion equations. In this paper, a rigorous mathematical description for the pattern dynamics of aggregating regions of biological individuals possessing the property of chemotaxis is presented. We identify a generalized nonlinear degenerate chemotaxis model where a destabilization mechanism may lead to spatially non homogeneous solutions. Given any general perturbation of the solution nearby an homogenous steady state, we prove that its nonlinear evolution is dominated by the corresponding linear dynamics along the finite number of fastest growing modes. The theoretical results are tested against two different numerical results in two dimensions showing an excellent qualitative agreement.

    Mathematics Subject Classification: Primary: 35B40, 35K57, 35K55, 35K65, 65M08; Secondary: 70K50, 92C15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Unstructured triangular mesh for the space domain $ {\Omega} = {\left({0,1}\right)}\times{\left({0,1}\right)} $ with 14336 acute angle triangles

    Figure 2.  Plot of $ h({\left\|{q}\right\|}^{2}) $ as a function of $ {\left\|{q}\right\|}^{2} $defined by equation (13). When the chemosensitivity strength $ \zeta $ increases beyond the critical value $ \zeta_{c} $, $ h({\left\|{q}\right\|}^{2}) $ becomes negative for a finite range of unstable wave numbers $ {\left\|{q}\right\|}^{2} $ marked with rhombi

    Figure 3.  To the top: Distribution of positive eigenvalues $ \lambda_{q}^{+} $ with respect to the range of unstable wave numbers $ {\left\|{q}\right\|}^{2} $. To the bottom: Distribution of negative eigenvalues $ \lambda_{q}^{-} $ with respect to the range of unstable wave numbers $ {\left\|{q}\right\|}^{2} $

    Figure 4.  Initial condition of the function $ u{\left({ {\mathbf{x}},t}\right)} $ given by equation (25) with a small perturbation around zero. 2D view of the function $ u{\left({ {\mathbf{x}},t}\right)} $ (to the left) and a 3D view of its magnitude (to the right)

    Figure 5.  First row from left to right: Nonlinear evolution of the function $ u{\left({ {\mathbf{x}},t}\right)} $ at $ t = 2.5 $, $ t = 325 $, and $ t = 997.5 $. Second row from left to right: Evolution of the heterogeneous stationary solutions at the same moments as for the evolution of $ u{\left({ {\mathbf{x}},t}\right)} $

    Figure 6.  Similarities of patterns between the nonlinear evolution $ u{\left({ {\mathbf{x}},t}\right)} $ (to the left) and the heterogeneous state (to the right)

    Figure 7.  Time evolution of the difference in $ {L^{2}} $ between $ u{\left({ {\mathbf{x}},t}\right)} $ and the heterogeneous solution

    Figure 8.  Plot of $ h({\left\|{q}\right\|}^{2}) $ as a function of $ {\left\|{q}\right\|}^{2} $defined by equation (13). When the death rate $ \beta $ decreases below the critical value $ \beta_{c} $, $ h({\left\|{q}\right\|}^{2}) $ becomes negative for a finite range of unstable wave numbers $ {\left\|{q}\right\|}^{2} $ marked with rhombi, and pattern formation can be expected

    Figure 9.  To the top: Distribution of positive eigenvalues $ \lambda_{q}^{+} $ with respect to the range of unstable wave numbers $ {\left\|{q}\right\|}^{2} $. To the bottom: Distribution of negative eigenvalues $ \lambda_{q}^{-} $ with respect to the range of unstable wave numbers $ {\left\|{q}\right\|}^{2} $

    Figure 10.  Initial condition of the function $ u{\left({ {\mathbf{x}},t}\right)} $ given by equation (25) with a small perturbation around zero.2D view of the function $ u{\left({ {\mathbf{x}},t}\right)} $ (to the left) and a 3D view of its magnitude (to the right)

    Figure 11.  First row from left to right. Nonlinear evolution of the function $ u{\left({ {\mathbf{x}},t}\right)} $ at $ t = 10 $, $ t = 70 $, and $ t = 750 $. Second row from left to right. Evolution of the heterogeneous stationary solutions at the same moments as for $ u{\left({ {\mathbf{x}},t}\right)} $

    Figure 12.  Similarities of patterns between the nonlinear evolution $ u({\left({ {\mathbf{x}},t}\right)} $ (to the left) and the heterogeneous state (to the right)

  • [1] B. AndreianovM. Bendahmane and M. Saad, Finite volume methods for degenerate chemotaxis model, J. Comput. Appl. Math., 235 (2011), 4015-4031.  doi: 10.1016/j.cam.2011.02.023.
    [2] C. BardosY. Guo and W. Strauss, Stable and unstable ideal plane flows, Chinese Ann. Math. Ser. B, 23 (2002), 149-164.  doi: 10.1142/S0252959902000158.
    [3] C. CancèsM. Ibrahim and M. Saad, A Nonlinear CVFE Scheme for an anisotropic degenerate nonlinear Keller-Segel model, European Consortium for Mathematics in Industry, 22 (2014), 1037-1046.  doi: 10.1007/978-3-319-23413-7_145.
    [4] G. ChamounM. IbrahimM. Saad and R. Talhouk, Numerical simulation of heterogeneous steady states for a reaction-diffusion degenerate Keller-Segel model, European Consortium for Mathematics in Industry, 30 (2019), 411-417.  doi: 10.1007/978-3-030-27550-1_52.
    [5] G. ChamounM. Saad and R. Talhouk, A coupled anisotropic chemotaxis-fluid model: The case of two-sidedly degenerate diffusion, Comput. Math. Appl., 68 (2014), 1052-1070.  doi: 10.1016/j.camwa.2014.04.010.
    [6] G. ChamounM. Saad and R. Talhouk, Monotone combined edge finite volume–finite element scheme for anisotropic Keller-Segel model, Numer. Methods Partial Differential Equations, 30 (2014), 1030-1065.  doi: 10.1002/num.21858.
    [7] M. H. Cohen and A. Robertson, Chemotaxis and the early stages of aggregation in cellular slime molds, Journal of Theoretical Biology, 31 (1971), 119-130.  doi: 10.1016/0022-5193(71)90125-1.
    [8] P. De LeenheerJ. Gopalakrishnan and E. Zuhr, Instability in a generalized Keller-Segel model, Journal of Biological Dynamics, 6 (2012), 974-991.  doi: 10.1080/17513758.2012.714478.
    [9] R. EymardT. Gallouët and R. Herbin, Finite volume methods, Handbook of Numerical Analysis, 7 (2000), 713-1020. 
    [10] S. Fu and F. Cao, Pattern formation of a Keller-Segel model with the source term $u^p(1-u)$, J. Math., (2013), Art. ID 454513, 11 pp. doi: 10.1155/2013/454513.
    [11] D. F. Griffiths and D. J. Higham, Numerical Methods For Ordinary Differential Equations. Initial Value Problems, Springer-Verlag London, Ltd., London, 2010. doi: 10.1007/978-0-85729-148-6.
    [12] Y. Guo, Instability of symmetric vortices with large charge and coupling constant, Comm. Pure Appl. Math., 49 (1996), 1051-1080.  doi: 10.1002/(SICI)1097-0312(199610)49:10<1051::AID-CPA2>3.0.CO;2-D.
    [13] Y. GuoC. Hallstrom and D. Spirn, Dynamics near an unstable Kirchhoff ellipse, Comm. Math. Phys., 245 (2004), 297-354.  doi: 10.1007/s00220-003-1017-z.
    [14] Y. Guo and H. J. Hwang, Pattern formation (Ⅰ): The Keller-Segel model, J. Differential Equations, 249 (2010), 1519-1530.  doi: 10.1016/j.jde.2010.07.025.
    [15] Y. Guo and H. J. Hwang, Pattern formation. (Ⅱ). The Turing instability, Proc. Amer. Math. Soc., 135 (2007), 2855-2866.  doi: 10.1090/S0002-9939-07-08850-8.
    [16] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.
    [17] T. Hoang and H. J. Hwang, Turing instability in a general system, Nonlinear Anal., 91 (2013), 93-113.  doi: 10.1016/j.na.2013.06.010.
    [18] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69. 
    [19] M. Ibrahim and M. Saad, On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model, Comput. Math. Appl., 68 (2014), 1032-1051.  doi: 10.1016/j.camwa.2014.03.010.
    [20] H.-Y. Jin and Z.-A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457.  doi: 10.1002/mma.3080.
    [21] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.
    [22] K. KutoK. OsakiT. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Phys. D, 241 (2012), 1629-1639.  doi: 10.1016/j.physd.2012.06.009.
    [23] O. A. Ladyžhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.
    [24] P. Laurençcot and D. Wrzosek, A chemotaxis model with threshold density and degenerate diffusion, Nonlinear Elliptic and Parabolic Problems, 64 (2005), 273-290.  doi: 10.1007/3-7643-7385-7_16.
    [25] R. J. LeVeque, Conservative methods for nonlinear problems, in Numerical Methods for Conservation Laws, Birkhäuser, Basel, 1990,122–135. doi: 10.1007/978-3-0348-5116-9.
    [26] J. Liu and Z.-A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6 (2012), 31-41.  doi: 10.1080/17513758.2011.571722.
    [27] P. K. Maini, The impact of Turing's work on pattern formation in biology, Mathematics Today, 40 (2004), 140-141. 
    [28] J. D. Murray, Mathematical biology Ⅱ: Spatial models and biomedical applications, in Interdisciplinary Applied Mathematics, vol. 18, Springer-Verlag, New York, 2003.
    [29] E. Sander and T. Wanner, Pattern formation in a nonlinear model for animal coats, J. Differential Equations, 191 (2003), 143-174.  doi: 10.1016/S0022-0396(02)00156-0.
    [30] Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.
    [31] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72. 
    [32] X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241-1266.  doi: 10.1007/s00285-012-0533-x.
    [33] S. WuJ. Shi and B. Wu, Global existence of solutions to an attraction-repulsion chemotaxis model with growth, Commun. Pure Appl. Anal., 16 (2017), 1037-1058.  doi: 10.3934/cpaa.2017050.
  • 加载中

Figures(12)

SHARE

Article Metrics

HTML views(2821) PDF downloads(462) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return