In this paper, the dynamics of the celebrated $ p- $periodic one-dimensional logistic map is explored. A result on the global stability of the origin is provided and, under certain conditions on the parameters, the local stability condition of the $ p- $periodic orbit is shown to imply its global stability.
Citation: |
[1] | K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences, Springer-Verlag, New York, 1997. doi: 10.1007/978-3-642-59281-2. |
[2] | Z. AlSharawi and J. Angelos, On the periodic logistic equation, Appl. Math. Comput., 180 (2006), 342-352. doi: 10.1016/j.amc.2005.12.016. |
[3] | W. A. Coppel, The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43. doi: 10.1017/S030500410002990X. |
[4] | R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Studies in Nonlinearity, second edition, Westview Press, Boulder, CO, 2003. |
[5] | H. A. El-Morshedy and V. J. López, Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410. doi: 10.1080/10236190701671632. |
[6] | S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, third edition, Springer, New York, 2005. |
[7] | S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Second edition, Chapman & Hall/CRC, Boca Raton, FL, 2008. |
[8] | M. Grinfeld, P. A. Knight and H. Lamba, On the periodically perturbed logistic equation, J. Phys. A, 29 (1996), 8035-8040. doi: 10.1088/0305-4470/29/24/026. |
[9] | R. B. Kellogg, T. Y. Li and J. Yorke, A constructive proof of the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., 13 (1976), 473-483. doi: 10.1137/0713041. |
[10] | M. Kot and W. M. Schaffer, The effects of seasonality on discrete models of population growth, Theoret. Population Biol., 26 (1984), 340-360. doi: 10.1016/0040-5809(84)90038-8. |
[11] | C. P. Li and M. Zhao, On the periodic logistic map, Acta Math. Sin. (Engl. Ser.), 34 (2018), 891-900. doi: 10.1007/s10114-017-6011-z. |
[12] | J. Li, Periodic solutions of population models in a periodically fluctuating environment, Math. Biosci., 110 (1992), 17-25. doi: 10.1016/0025-5564(92)90012-L. |
[13] | E. Liz, On the global stability of periodic Ricker maps, Electron. J. Qual. Theory Differ. Equ., 76 (2016), 8 pp. doi: 10.14232/ejqtde.2016.1.76. |
[14] | R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. |
[15] | J. R. Munkres, Topology: A First Course, Prentice Hall, Inc., Englewood Cliffs, NJ, 1975. |
[16] | R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc., 11 (1977). doi: 10.1090/memo/0190. |
[17] | H. Sedaghat, Nonlinear Difference Equations. Theory with Applications to Social Models, Mathematical Modelling: Theory and applications, vol. 15, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-017-0417-5. |
[18] | D. Singer, Stable orbits and bifurcation maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267. doi: 10.1137/0135020. |
[19] | P. F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance Math. Phys., 10 (1838), 113-121. |