November  2020, 25(11): 4211-4220. doi: 10.3934/dcdsb.2020094

A note on global stability in the periodic logistic map

1. 

Center for Mathematical Analysis, Geometry and Dynamical Systems, University of Lisbon, Portugal, University of Madeira, Funchal, Portugal

2. 

University of Madeira, Funchal, Portugal, Center of Statistics and Applications, University of Lisbon, Portugal

* Corresponding author: Rafael Luís

Received  July 2019 Revised  October 2019 Published  April 2020

Fund Project: The first and second authors are partially supported by FCT/Portugal through the projects UID/MAT/04459/2019 and UID/MAT/00006/2019, respectively

In this paper, the dynamics of the celebrated $ p- $periodic one-dimensional logistic map is explored. A result on the global stability of the origin is provided and, under certain conditions on the parameters, the local stability condition of the $ p- $periodic orbit is shown to imply its global stability.

Citation: Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094
References:
[1]

K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences, Springer-Verlag, New York, 1997. doi: 10.1007/978-3-642-59281-2.  Google Scholar

[2]

Z. AlSharawi and J. Angelos, On the periodic logistic equation, Appl. Math. Comput., 180 (2006), 342-352.  doi: 10.1016/j.amc.2005.12.016.  Google Scholar

[3]

W. A. Coppel, The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43.  doi: 10.1017/S030500410002990X.  Google Scholar

[4]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Studies in Nonlinearity, second edition, Westview Press, Boulder, CO, 2003.  Google Scholar

[5]

H. A. El-Morshedy and V. J. López, Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.  doi: 10.1080/10236190701671632.  Google Scholar

[6]

S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, third edition, Springer, New York, 2005.  Google Scholar

[7]

S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Second edition, Chapman & Hall/CRC, Boca Raton, FL, 2008.  Google Scholar

[8]

M. GrinfeldP. A. Knight and H. Lamba, On the periodically perturbed logistic equation, J. Phys. A, 29 (1996), 8035-8040.  doi: 10.1088/0305-4470/29/24/026.  Google Scholar

[9]

R. B. KelloggT. Y. Li and J. Yorke, A constructive proof of the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., 13 (1976), 473-483.  doi: 10.1137/0713041.  Google Scholar

[10]

M. Kot and W. M. Schaffer, The effects of seasonality on discrete models of population growth, Theoret. Population Biol., 26 (1984), 340-360.  doi: 10.1016/0040-5809(84)90038-8.  Google Scholar

[11]

C. P. Li and M. Zhao, On the periodic logistic map, Acta Math. Sin. (Engl. Ser.), 34 (2018), 891-900.  doi: 10.1007/s10114-017-6011-z.  Google Scholar

[12]

J. Li, Periodic solutions of population models in a periodically fluctuating environment, Math. Biosci., 110 (1992), 17-25.  doi: 10.1016/0025-5564(92)90012-L.  Google Scholar

[13]

E. Liz, On the global stability of periodic Ricker maps, Electron. J. Qual. Theory Differ. Equ., 76 (2016), 8 pp. doi: 10.14232/ejqtde.2016.1.76.  Google Scholar

[14]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.   Google Scholar

[15]

J. R. Munkres, Topology: A First Course, Prentice Hall, Inc., Englewood Cliffs, NJ, 1975.  Google Scholar

[16]

R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc., 11 (1977). doi: 10.1090/memo/0190.  Google Scholar

[17]

H. Sedaghat, Nonlinear Difference Equations. Theory with Applications to Social Models, Mathematical Modelling: Theory and applications, vol. 15, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-017-0417-5.  Google Scholar

[18]

D. Singer, Stable orbits and bifurcation maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.  doi: 10.1137/0135020.  Google Scholar

[19]

P. F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance Math. Phys., 10 (1838), 113-121.   Google Scholar

show all references

References:
[1]

K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences, Springer-Verlag, New York, 1997. doi: 10.1007/978-3-642-59281-2.  Google Scholar

[2]

Z. AlSharawi and J. Angelos, On the periodic logistic equation, Appl. Math. Comput., 180 (2006), 342-352.  doi: 10.1016/j.amc.2005.12.016.  Google Scholar

[3]

W. A. Coppel, The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43.  doi: 10.1017/S030500410002990X.  Google Scholar

[4]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Studies in Nonlinearity, second edition, Westview Press, Boulder, CO, 2003.  Google Scholar

[5]

H. A. El-Morshedy and V. J. López, Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.  doi: 10.1080/10236190701671632.  Google Scholar

[6]

S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, third edition, Springer, New York, 2005.  Google Scholar

[7]

S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Second edition, Chapman & Hall/CRC, Boca Raton, FL, 2008.  Google Scholar

[8]

M. GrinfeldP. A. Knight and H. Lamba, On the periodically perturbed logistic equation, J. Phys. A, 29 (1996), 8035-8040.  doi: 10.1088/0305-4470/29/24/026.  Google Scholar

[9]

R. B. KelloggT. Y. Li and J. Yorke, A constructive proof of the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., 13 (1976), 473-483.  doi: 10.1137/0713041.  Google Scholar

[10]

M. Kot and W. M. Schaffer, The effects of seasonality on discrete models of population growth, Theoret. Population Biol., 26 (1984), 340-360.  doi: 10.1016/0040-5809(84)90038-8.  Google Scholar

[11]

C. P. Li and M. Zhao, On the periodic logistic map, Acta Math. Sin. (Engl. Ser.), 34 (2018), 891-900.  doi: 10.1007/s10114-017-6011-z.  Google Scholar

[12]

J. Li, Periodic solutions of population models in a periodically fluctuating environment, Math. Biosci., 110 (1992), 17-25.  doi: 10.1016/0025-5564(92)90012-L.  Google Scholar

[13]

E. Liz, On the global stability of periodic Ricker maps, Electron. J. Qual. Theory Differ. Equ., 76 (2016), 8 pp. doi: 10.14232/ejqtde.2016.1.76.  Google Scholar

[14]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.   Google Scholar

[15]

J. R. Munkres, Topology: A First Course, Prentice Hall, Inc., Englewood Cliffs, NJ, 1975.  Google Scholar

[16]

R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc., 11 (1977). doi: 10.1090/memo/0190.  Google Scholar

[17]

H. Sedaghat, Nonlinear Difference Equations. Theory with Applications to Social Models, Mathematical Modelling: Theory and applications, vol. 15, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-017-0417-5.  Google Scholar

[18]

D. Singer, Stable orbits and bifurcation maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.  doi: 10.1137/0135020.  Google Scholar

[19]

P. F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance Math. Phys., 10 (1838), 113-121.   Google Scholar

Figure 1.  Regions of stability, in the parameter space $ r_{0}O r_1 $, of the fixed points of $ f_1\circ f_0 $, with $ f_i(x) = r_i x(1-x) $, $ i = 0, 1 $
[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[5]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[6]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[7]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[9]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[10]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[12]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[18]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[19]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[20]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (181)
  • HTML views (247)
  • Cited by (0)

Other articles
by authors

[Back to Top]