
-
Previous Article
Fractional approximations of abstract semilinear parabolic problems
- DCDS-B Home
- This Issue
-
Next Article
Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment
A note on global stability in the periodic logistic map
1. | Center for Mathematical Analysis, Geometry and Dynamical Systems, University of Lisbon, Portugal, University of Madeira, Funchal, Portugal |
2. | University of Madeira, Funchal, Portugal, Center of Statistics and Applications, University of Lisbon, Portugal |
In this paper, the dynamics of the celebrated $ p- $periodic one-dimensional logistic map is explored. A result on the global stability of the origin is provided and, under certain conditions on the parameters, the local stability condition of the $ p- $periodic orbit is shown to imply its global stability.
References:
[1] |
K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences, Springer-Verlag, New York, 1997.
doi: 10.1007/978-3-642-59281-2. |
[2] |
Z. AlSharawi and J. Angelos,
On the periodic logistic equation, Appl. Math. Comput., 180 (2006), 342-352.
doi: 10.1016/j.amc.2005.12.016. |
[3] |
W. A. Coppel,
The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43.
doi: 10.1017/S030500410002990X. |
[4] |
R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Studies in Nonlinearity,
second edition, Westview Press, Boulder, CO, 2003. |
[5] |
H. A. El-Morshedy and V. J. López,
Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.
doi: 10.1080/10236190701671632. |
[6] |
S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, third edition, Springer, New York, 2005. |
[7] |
S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Second edition, Chapman & Hall/CRC, Boca Raton, FL, 2008. |
[8] |
M. Grinfeld, P. A. Knight and H. Lamba,
On the periodically perturbed logistic equation, J. Phys. A, 29 (1996), 8035-8040.
doi: 10.1088/0305-4470/29/24/026. |
[9] |
R. B. Kellogg, T. Y. Li and J. Yorke,
A constructive proof of the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., 13 (1976), 473-483.
doi: 10.1137/0713041. |
[10] |
M. Kot and W. M. Schaffer,
The effects of seasonality on discrete models of population growth, Theoret. Population Biol., 26 (1984), 340-360.
doi: 10.1016/0040-5809(84)90038-8. |
[11] |
C. P. Li and M. Zhao,
On the periodic logistic map, Acta Math. Sin. (Engl. Ser.), 34 (2018), 891-900.
doi: 10.1007/s10114-017-6011-z. |
[12] |
J. Li,
Periodic solutions of population models in a periodically fluctuating environment, Math. Biosci., 110 (1992), 17-25.
doi: 10.1016/0025-5564(92)90012-L. |
[13] |
E. Liz, On the global stability of periodic Ricker maps, Electron. J. Qual. Theory Differ. Equ., 76 (2016), 8 pp.
doi: 10.14232/ejqtde.2016.1.76. |
[14] |
R. M. May,
Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.
|
[15] |
J. R. Munkres, Topology: A First Course, Prentice Hall, Inc., Englewood Cliffs, NJ, 1975. |
[16] |
R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc., 11 (1977).
doi: 10.1090/memo/0190. |
[17] |
H. Sedaghat, Nonlinear Difference Equations. Theory with Applications to Social Models, Mathematical Modelling: Theory and applications, vol. 15, Kluwer Academic Publishers, Dordrecht, 2003.
doi: 10.1007/978-94-017-0417-5. |
[18] |
D. Singer,
Stable orbits and bifurcation maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020. |
[19] |
P. F. Verhulst,
Notice sur la loi que la population poursuit dans son accroissement, Correspondance Math. Phys., 10 (1838), 113-121.
|
show all references
References:
[1] |
K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences, Springer-Verlag, New York, 1997.
doi: 10.1007/978-3-642-59281-2. |
[2] |
Z. AlSharawi and J. Angelos,
On the periodic logistic equation, Appl. Math. Comput., 180 (2006), 342-352.
doi: 10.1016/j.amc.2005.12.016. |
[3] |
W. A. Coppel,
The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43.
doi: 10.1017/S030500410002990X. |
[4] |
R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Studies in Nonlinearity,
second edition, Westview Press, Boulder, CO, 2003. |
[5] |
H. A. El-Morshedy and V. J. López,
Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.
doi: 10.1080/10236190701671632. |
[6] |
S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, third edition, Springer, New York, 2005. |
[7] |
S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Second edition, Chapman & Hall/CRC, Boca Raton, FL, 2008. |
[8] |
M. Grinfeld, P. A. Knight and H. Lamba,
On the periodically perturbed logistic equation, J. Phys. A, 29 (1996), 8035-8040.
doi: 10.1088/0305-4470/29/24/026. |
[9] |
R. B. Kellogg, T. Y. Li and J. Yorke,
A constructive proof of the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., 13 (1976), 473-483.
doi: 10.1137/0713041. |
[10] |
M. Kot and W. M. Schaffer,
The effects of seasonality on discrete models of population growth, Theoret. Population Biol., 26 (1984), 340-360.
doi: 10.1016/0040-5809(84)90038-8. |
[11] |
C. P. Li and M. Zhao,
On the periodic logistic map, Acta Math. Sin. (Engl. Ser.), 34 (2018), 891-900.
doi: 10.1007/s10114-017-6011-z. |
[12] |
J. Li,
Periodic solutions of population models in a periodically fluctuating environment, Math. Biosci., 110 (1992), 17-25.
doi: 10.1016/0025-5564(92)90012-L. |
[13] |
E. Liz, On the global stability of periodic Ricker maps, Electron. J. Qual. Theory Differ. Equ., 76 (2016), 8 pp.
doi: 10.14232/ejqtde.2016.1.76. |
[14] |
R. M. May,
Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.
|
[15] |
J. R. Munkres, Topology: A First Course, Prentice Hall, Inc., Englewood Cliffs, NJ, 1975. |
[16] |
R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc., 11 (1977).
doi: 10.1090/memo/0190. |
[17] |
H. Sedaghat, Nonlinear Difference Equations. Theory with Applications to Social Models, Mathematical Modelling: Theory and applications, vol. 15, Kluwer Academic Publishers, Dordrecht, 2003.
doi: 10.1007/978-94-017-0417-5. |
[18] |
D. Singer,
Stable orbits and bifurcation maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020. |
[19] |
P. F. Verhulst,
Notice sur la loi que la population poursuit dans son accroissement, Correspondance Math. Phys., 10 (1838), 113-121.
|

[1] |
Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109 |
[2] |
Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315 |
[3] |
Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575 |
[4] |
Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385 |
[5] |
Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109 |
[6] |
Armengol Gasull, Héctor Giacomini, Maite Grau. On the stability of periodic orbits for differential systems in $\mathbb{R}^n$. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 495-509. doi: 10.3934/dcdsb.2008.10.495 |
[7] |
Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151 |
[8] |
Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure and Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029 |
[9] |
Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993 |
[10] |
E. Trofimchuk, Sergei Trofimchuk. Global stability in a regulated logistic growth model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 461-468. doi: 10.3934/dcdsb.2005.5.461 |
[11] |
Anatoly Neishtadt, Carles Simó, Dmitry Treschev, Alexei Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 621-650. doi: 10.3934/dcdsb.2008.10.621 |
[12] |
Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032 |
[13] |
Fabrício Cristófani, Ademir Pastor. Nonlinear stability of periodic-wave solutions for systems of dispersive equations. Communications on Pure and Applied Analysis, 2020, 19 (10) : 5015-5032. doi: 10.3934/cpaa.2020225 |
[14] |
Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319 |
[15] |
Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057 |
[16] |
Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864 |
[17] |
E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 323-351. doi: 10.3934/dcdsb.2014.19.323 |
[18] |
Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177 |
[19] |
Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505 |
[20] |
Katrin Gelfert, Christian Wolf. On the distribution of periodic orbits. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 949-966. doi: 10.3934/dcds.2010.26.949 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]