• Previous Article
    Periodic solutions for SDEs through upper and lower solutions
  • DCDS-B Home
  • This Issue
  • Next Article
    Global mass-preserving solutions for a two-dimensional chemotaxis system with rotational flux components coupled with a full Navier–Stokes equation
doi: 10.3934/dcdsb.2020095

Fractional approximations of abstract semilinear parabolic problems

1. 

Departamento de Matemática, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil

2. 

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo-Campus de São Carlos, São Carlos, SP Caixa Postal 668, 13560-970, Brazil

3. 

Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil

* Corresponding author: Marcelo J. D. Nascimento

The first author is supported by FAPESP # 2014/03686-3, Brazil.
The second author is supported by CNPq # 303929/2015-4 and by FAPESP # 2003/10042-0, Brazil.
The third author is supported by FAPESP # 2017/06582-2, Brazil.

Received  July 2019 Revised  November 2019 Published  April 2020

In this paper we study the abstract semilinear parabolic problem of the form
$ \frac{du}{dt}+Au = f(u), $
as the limit of the corresponding fractional approximations
$ \frac{du}{dt} + A^{\alpha}u = f(u), $
in a Banach space
$ X $
, where the operator
$ A:D(A) \subset X \to X $
is a sectorial operator in the sense of Henry [22]. Under suitable assumptions on nonlinearities
$ f:X^\alpha\to X $
(
$ X^\alpha: = D(A^\alpha $
)), we prove the continuity with rate (with respect to the parameter
$ \alpha $
) for the global attractors (as seen in Babin and Vishik [4] Chapter 8, Theorem 2.1). As an application of our analysis we consider a fractional approximation of the strongly damped wave equations and we study the convergence with rate of solutions of such approximations.
Citation: Flank D. M. Bezerra, Alexandre N. Carvalho, Marcelo J. D. Nascimento. Fractional approximations of abstract semilinear parabolic problems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020095
References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations, 199 (2004), 143-178.  doi: 10.1016/j.jde.2003.09.004.  Google Scholar

[3]

J. M. Arrieta and E. Santamaría, Estimates on the distance of inertial manifolds, Discrete Contin. Dyn. Syst., 34 (2014), 3921-3944.  doi: 10.3934/dcds.2014.34.3921.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, vol. 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[5]

A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62 (1983), 441-491.   Google Scholar

[6]

F. D. M. BezerraA. N. CarvalhoJ. W. Cholewa and M. J. D. Nascimento, Parabolic approximation of damped wave equations via fractional powers: Fast growing nonlinearities and continuity of the dynamics, J. Math. Anal. Appl., 450 (2017), 377-405.  doi: 10.1016/j.jmaa.2017.01.024.  Google Scholar

[7]

F. D. M. BezerraA. N. CarvalhoT. Dlotko and M. J. D. Nascimento, Fractional Schrödinger equation; Solvability and connection with classical Schrödinger equation, J. Math. Anal. Appl., 457 (2018), 336-360.  doi: 10.1016/j.jmaa.2017.08.014.  Google Scholar

[8]

S. M. BruschiA. N. CarvalhoJ. W. Cholewa and T. Dlotko, Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations, J. Dynam. Differential Equations, 18 (2006), 767-814.  doi: 10.1007/s10884-006-9023-4.  Google Scholar

[9]

V. L. CarboneA. N. Carvalho and K. Schiabel-Silva, Continuity of attractors for parabolic problems with localized large diffusion, Nonlinear Anal., 68 (2008), 515-535.   Google Scholar

[10]

A. N. Carvalho and J. W. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc., 66 (2002), 443-463.  doi: 10.1017/S0004972700040296.  Google Scholar

[11]

A. N. Carvalho, J. W. Cholewa and T. Dłotko, Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation., Proc. Roy. Soc. Edinburgh Sect. A 144 (2014) 13–51. doi: 10.1017/S0308210511001235.  Google Scholar

[12]

A. N. Carvalho and T. Dlotko, Dynamics of the viscous Cahn-Hilliard equation, J. Math. Anal. Appl., 344 (2008), 703-725.  doi: 10.1016/j.jmaa.2008.03.020.  Google Scholar

[13]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences, vol. 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[14]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[15]

A. N. Carvalho and S. Piskarev, A general approximation scheme for attractors of abstract parabolic problems, Numer. Funct. Anal. Optim., 27 (2006), 785-829.  doi: 10.1080/01630560600882723.  Google Scholar

[16]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[17]

T. CazenaveD. Fang and Z. Han, Continuous dependence for NLS in fractional order spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 135-147.  doi: 10.1016/j.anihpc.2010.11.005.  Google Scholar

[18]

S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15-55.  doi: 10.2140/pjm.1989.136.15.  Google Scholar

[19]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.  Google Scholar

[20]

R. Czaja, Differential Equations with Sectorial Operator, Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2002. Google Scholar

[21]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[22]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[23]

T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad., 36 (1960), 94-96.  doi: 10.3792/pja/1195524082.  Google Scholar

[24]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[25]

S. G. Kre${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}}$n, Linear Differential Equations in Banach Space, American Mathematical Society, 1972. Google Scholar

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[27]

H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, vol. 6, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.  Google Scholar

[28]

M. E. Taylor, Partial Differential Equations. Basic Theory, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.  Google Scholar

[29]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

show all references

References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations, 199 (2004), 143-178.  doi: 10.1016/j.jde.2003.09.004.  Google Scholar

[3]

J. M. Arrieta and E. Santamaría, Estimates on the distance of inertial manifolds, Discrete Contin. Dyn. Syst., 34 (2014), 3921-3944.  doi: 10.3934/dcds.2014.34.3921.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, vol. 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[5]

A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62 (1983), 441-491.   Google Scholar

[6]

F. D. M. BezerraA. N. CarvalhoJ. W. Cholewa and M. J. D. Nascimento, Parabolic approximation of damped wave equations via fractional powers: Fast growing nonlinearities and continuity of the dynamics, J. Math. Anal. Appl., 450 (2017), 377-405.  doi: 10.1016/j.jmaa.2017.01.024.  Google Scholar

[7]

F. D. M. BezerraA. N. CarvalhoT. Dlotko and M. J. D. Nascimento, Fractional Schrödinger equation; Solvability and connection with classical Schrödinger equation, J. Math. Anal. Appl., 457 (2018), 336-360.  doi: 10.1016/j.jmaa.2017.08.014.  Google Scholar

[8]

S. M. BruschiA. N. CarvalhoJ. W. Cholewa and T. Dlotko, Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations, J. Dynam. Differential Equations, 18 (2006), 767-814.  doi: 10.1007/s10884-006-9023-4.  Google Scholar

[9]

V. L. CarboneA. N. Carvalho and K. Schiabel-Silva, Continuity of attractors for parabolic problems with localized large diffusion, Nonlinear Anal., 68 (2008), 515-535.   Google Scholar

[10]

A. N. Carvalho and J. W. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc., 66 (2002), 443-463.  doi: 10.1017/S0004972700040296.  Google Scholar

[11]

A. N. Carvalho, J. W. Cholewa and T. Dłotko, Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation., Proc. Roy. Soc. Edinburgh Sect. A 144 (2014) 13–51. doi: 10.1017/S0308210511001235.  Google Scholar

[12]

A. N. Carvalho and T. Dlotko, Dynamics of the viscous Cahn-Hilliard equation, J. Math. Anal. Appl., 344 (2008), 703-725.  doi: 10.1016/j.jmaa.2008.03.020.  Google Scholar

[13]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences, vol. 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[14]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[15]

A. N. Carvalho and S. Piskarev, A general approximation scheme for attractors of abstract parabolic problems, Numer. Funct. Anal. Optim., 27 (2006), 785-829.  doi: 10.1080/01630560600882723.  Google Scholar

[16]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[17]

T. CazenaveD. Fang and Z. Han, Continuous dependence for NLS in fractional order spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 135-147.  doi: 10.1016/j.anihpc.2010.11.005.  Google Scholar

[18]

S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15-55.  doi: 10.2140/pjm.1989.136.15.  Google Scholar

[19]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.  Google Scholar

[20]

R. Czaja, Differential Equations with Sectorial Operator, Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2002. Google Scholar

[21]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[22]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[23]

T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad., 36 (1960), 94-96.  doi: 10.3792/pja/1195524082.  Google Scholar

[24]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[25]

S. G. Kre${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}}$n, Linear Differential Equations in Banach Space, American Mathematical Society, 1972. Google Scholar

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[27]

H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, vol. 6, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.  Google Scholar

[28]

M. E. Taylor, Partial Differential Equations. Basic Theory, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.  Google Scholar

[29]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

Figure 1.  $\Gamma = \Gamma_1\cup\Gamma_2\cup\Gamma_3 $, ($\Gamma = -\mathcal{G}$)
[1]

Antônio Luiz Pereira, Severino Horácio da Silva. Continuity of global attractors for a class of non local evolution equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1073-1100. doi: 10.3934/dcds.2010.26.1073

[2]

John M. Ball. Global attractors for damped semilinear wave equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31

[3]

Valeria Danese, Pelin G. Geredeli, Vittorino Pata. Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2881-2904. doi: 10.3934/dcds.2015.35.2881

[4]

Wolf-Jürgen Beyn, Sergey Piskarev. Shadowing for discrete approximations of abstract parabolic equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 19-42. doi: 10.3934/dcdsb.2008.10.19

[5]

Tomasz Dlotko, Tongtong Liang, Yejuan Wang. Critical and super-critical abstract parabolic equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1517-1541. doi: 10.3934/dcdsb.2019238

[6]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[7]

Filippo Dell'Oro. Global attractors for strongly damped wave equations with subcritical-critical nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1015-1027. doi: 10.3934/cpaa.2013.12.1015

[8]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[9]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

[10]

Hong Lu, Jiangang Qi, Bixiang Wang, Mingji Zhang. Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 683-706. doi: 10.3934/dcds.2019028

[11]

Igor Chueshov, Alexander V. Rezounenko. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1685-1704. doi: 10.3934/cpaa.2015.14.1685

[12]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[13]

Norihisa Ikoma. Multiplicity of radial and nonradial solutions to equations with fractional operators. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3501-3530. doi: 10.3934/cpaa.2020153

[14]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[15]

Maria Colombo, Gianluca Crippa, Stefano Spirito. Logarithmic estimates for continuity equations. Networks & Heterogeneous Media, 2016, 11 (2) : 301-311. doi: 10.3934/nhm.2016.11.301

[16]

Nguyen Huy Tuan, Donal O'Regan, Tran Bao Ngoc. Continuity with respect to fractional order of the time fractional diffusion-wave equation. Evolution Equations & Control Theory, 2020, 9 (3) : 773-793. doi: 10.3934/eect.2020033

[17]

Mei-Qin Zhan. Global attractors for phase-lock equations in superconductivity. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 243-256. doi: 10.3934/dcdsb.2002.2.243

[18]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[19]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure & Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[20]

Valentin Keyantuo, Mahamadi Warma. On the interior approximate controllability for fractional wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3719-3739. doi: 10.3934/dcds.2016.36.3719

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (39)
  • HTML views (136)
  • Cited by (0)

[Back to Top]