November  2020, 25(11): 4277-4293. doi: 10.3934/dcdsb.2020097

On global large energy solutions to the viscous shallow water equations

1. 

School of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China

2. 

Shenzhen Key Laboratory of Advanced Machine Learing and Applications, Shenzhen University, Shenzhen, 518060, China

* Corresponding author: Hailong Ye

Received  July 2011 Published  April 2020

By exploring the smooth effect of the heat flows and the weighted-Chemin-Lerner technique, we obtain the global solutions of large energy to the viscous shallow water equations with initial data in the critical Besov spaces, which improves the previous small energy type arguments [5], [13]. Moreover, the method used here is quiet different from [5], [13].

Citation: Xiaoping Zhai, Hailong Ye. On global large energy solutions to the viscous shallow water equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4277-4293. doi: 10.3934/dcdsb.2020097
References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 343, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.  doi: 10.1007/s00220-003-0859-8.  Google Scholar

[3]

D. Bresch, B. Desjardins and G. Métivier, Recent mathematical results and open problem about shallow water equations, in Analysis and Simulation of Fluid Dynamics, Birkhäuser, Basel, 2006, 15–31. doi: 10.1007/978-3-7643-7742-7_2.  Google Scholar

[4]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes (French), J. Differential Equations, 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[5]

Q. ChenC. Miao and Z. Zhang, On the well-posedness for the viscous shallow water equations, SIAM J. Math. Anal., 40 (2008), 443-474.  doi: 10.1137/060660552.  Google Scholar

[6]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Ration. Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.  Google Scholar

[7]

P. Kloeden, Global existence of classical solutions in the dissipative shallow water equations, SIAM J. Math. Anal., 16 (1985), 301-315.  doi: 10.1137/0516022.  Google Scholar

[8]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[9] C. MiaoJ. Wu and Z. Zhang, Littlewood-Paley Theory and its Applications: Hydrodynamic Equations (Chinese Edition), Scientific Press, 2012.   Google Scholar
[10]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis Applications, Vol. 3, Walter de Gruyter & Co., Berlin, 1996. doi: 10.1515/9783110812411.  Google Scholar

[11]

L. Sundbye, Global existence for the Dirichlet problem for the viscous shallow water equations, J. Math. Anal. Appl., 202 (1996), 236-258.  doi: 10.1006/jmaa.1996.0315.  Google Scholar

[12]

B. A. Ton, Existence and uniqueness of a classical solution of an initial boundary value problem of the theory of shallow waters, SIAM J. Math. Anal., 12 (1981), 229-241.  doi: 10.1137/0512022.  Google Scholar

[13]

W. Wang and C.-J. Xu, The Cauchy problem for viscous shallow water equations, Rev. Mat. Iberoamericana, 21 (2005), 1-24.  doi: 10.4171/RMI/412.  Google Scholar

show all references

References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 343, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.  doi: 10.1007/s00220-003-0859-8.  Google Scholar

[3]

D. Bresch, B. Desjardins and G. Métivier, Recent mathematical results and open problem about shallow water equations, in Analysis and Simulation of Fluid Dynamics, Birkhäuser, Basel, 2006, 15–31. doi: 10.1007/978-3-7643-7742-7_2.  Google Scholar

[4]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes (French), J. Differential Equations, 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[5]

Q. ChenC. Miao and Z. Zhang, On the well-posedness for the viscous shallow water equations, SIAM J. Math. Anal., 40 (2008), 443-474.  doi: 10.1137/060660552.  Google Scholar

[6]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Ration. Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.  Google Scholar

[7]

P. Kloeden, Global existence of classical solutions in the dissipative shallow water equations, SIAM J. Math. Anal., 16 (1985), 301-315.  doi: 10.1137/0516022.  Google Scholar

[8]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[9] C. MiaoJ. Wu and Z. Zhang, Littlewood-Paley Theory and its Applications: Hydrodynamic Equations (Chinese Edition), Scientific Press, 2012.   Google Scholar
[10]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis Applications, Vol. 3, Walter de Gruyter & Co., Berlin, 1996. doi: 10.1515/9783110812411.  Google Scholar

[11]

L. Sundbye, Global existence for the Dirichlet problem for the viscous shallow water equations, J. Math. Anal. Appl., 202 (1996), 236-258.  doi: 10.1006/jmaa.1996.0315.  Google Scholar

[12]

B. A. Ton, Existence and uniqueness of a classical solution of an initial boundary value problem of the theory of shallow waters, SIAM J. Math. Anal., 12 (1981), 229-241.  doi: 10.1137/0512022.  Google Scholar

[13]

W. Wang and C.-J. Xu, The Cauchy problem for viscous shallow water equations, Rev. Mat. Iberoamericana, 21 (2005), 1-24.  doi: 10.4171/RMI/412.  Google Scholar

[1]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[2]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[3]

Weike Wang, Yucheng Wang. Global existence and large time behavior for the chemotaxis–shallow water system in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6379-6409. doi: 10.3934/dcds.2020284

[4]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020230

[5]

Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks & Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145

[6]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020198

[7]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[8]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[9]

Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555

[10]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[11]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[12]

Anna Geyer, Ronald Quirchmayr. Traveling wave solutions of a highly nonlinear shallow water equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1567-1604. doi: 10.3934/dcds.2018065

[13]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[14]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[15]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[16]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[17]

Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2019, 6 (1) : 1-37. doi: 10.3934/jcd.2019001

[18]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[19]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[20]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (91)
  • HTML views (222)
  • Cited by (0)

Other articles
by authors

[Back to Top]