November  2020, 25(11): 4317-4333. doi: 10.3934/dcdsb.2020099

Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum

School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China

Received  August 2011 Published  April 2020

Fund Project: The author is partially supported by NSFC grant 11801460

In this paper, we prove the unique global strong solution for the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows when the initial density can contain vacuum states, as long as the initial data satisfies some compatibility condition. Furthermore, our main result improves all the previous results where the initial density is strictly positive. The main ingredient of the proof is to use some critical Sobolev inequality of logarithmic type, which were originally due to Brezis-Gallouet in [3] and Brezis-Wainger in [4], some regularity properties of Stokes system and some delicate energy estimates for nonhomogeneous incompressible heat conducting flows.

Citation: Yongfu Wang. Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4317-4333. doi: 10.3934/dcdsb.2020099
References:
[1]

S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosibirsk State University, Novosibirsk, U.S.S.R., 1973. Google Scholar

[2]

S. A. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids., North-Holland Publishing Co., Amsterdam, 1990.  Google Scholar

[3]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[4]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar

[5]

Y. Cho and H. Kim, Existence result for heat-conducting viscous incompressible fluid with vacuum, J. Korean Math. Soc., 45 (2008), 645-681.  doi: 10.4134/JKMS.2008.45.3.645.  Google Scholar

[6]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[7]

L. Du and Y. Wang, A blowup criterion for viscous, compressible, and heat-conductive magnetohydrodynamic flows, J. Math. Phys., 56 (2015), 091503, 20 pp. doi: 10.1063/1.4928869.  Google Scholar

[8]

J. FanS. Jiang and Y. Ou, A blow-up criterion for compressible viscous heatconductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337-350.  doi: 10.1016/j.anihpc.2009.09.012.  Google Scholar

[9]

D. FangR. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows, Nonlinear Anal., 75 (2012), 3130-3141.  doi: 10.1016/j.na.2011.12.011.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of Navier-Stokes Equations: Linearized Steady Problems, Vol. 1, Springer-Verlag, New York, 1994.  Google Scholar

[11]

C. He, J. Li and B. Lü, On the cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, preprint, arXiv: 1709.05608, (2017). Google Scholar

[12]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[13]

X. Huang and J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and Magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147-171.  doi: 10.1007/s00220-013-1791-1.  Google Scholar

[14]

X. HuangJ. Li and Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Rational Mech. Anal, 207 (2013), 303-316.  doi: 10.1007/s00205-012-0577-5.  Google Scholar

[15]

X. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.  doi: 10.1016/j.jde.2015.03.008.  Google Scholar

[16]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[17]

X. Huang and Y. Wang, Global strong solution with vacuum to the two-dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.  doi: 10.1137/120894865.  Google Scholar

[18]

X. Huang and Z. Xin, On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity, Discrete Contin. Dyn. Syst., 36 (2016), 4477-4493.  doi: 10.3934/dcds.2016.36.4477.  Google Scholar

[19]

S. Jiang and Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Acta Math. Sci. Ser. B (Engl. Ed.), 30 (2010), 1851-1864.  doi: 10.1016/S0252-9602(10)60178-6.  Google Scholar

[20]

A. V. Kajikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010.   Google Scholar

[21]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.  doi: 10.1137/S0036141004442197.  Google Scholar

[22]

H. KozonoT. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.  doi: 10.1007/s002090100332.  Google Scholar

[23]

H.-L. LiX. Xu and J. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.  doi: 10.1137/120893355.  Google Scholar

[24] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2., Compressible Models, The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[25]

B. LüZ. Xu and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.  doi: 10.1016/j.matpur.2016.10.009.  Google Scholar

[26]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.  doi: 10.1007/978-3-642-10926-3_1.  Google Scholar

[27] A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27, Oxford University Press, Oxford, 2004.   Google Scholar
[28]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[29]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[30]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch Ration. Mech. Anal., 201 (2011), 727-742.  doi: 10.1007/s00205-011-0407-1.  Google Scholar

[31]

Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214-226.  doi: 10.1016/j.nonrwa.2013.09.020.  Google Scholar

[32]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math, 51 (1998), 229-240.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[33]

Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, Comm. Math. Phys., 321 (2013), 529-241.  doi: 10.1007/s00220-012-1610-0.  Google Scholar

[34]

J. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.  doi: 10.1016/j.jde.2015.03.011.  Google Scholar

show all references

References:
[1]

S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosibirsk State University, Novosibirsk, U.S.S.R., 1973. Google Scholar

[2]

S. A. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids., North-Holland Publishing Co., Amsterdam, 1990.  Google Scholar

[3]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[4]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar

[5]

Y. Cho and H. Kim, Existence result for heat-conducting viscous incompressible fluid with vacuum, J. Korean Math. Soc., 45 (2008), 645-681.  doi: 10.4134/JKMS.2008.45.3.645.  Google Scholar

[6]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[7]

L. Du and Y. Wang, A blowup criterion for viscous, compressible, and heat-conductive magnetohydrodynamic flows, J. Math. Phys., 56 (2015), 091503, 20 pp. doi: 10.1063/1.4928869.  Google Scholar

[8]

J. FanS. Jiang and Y. Ou, A blow-up criterion for compressible viscous heatconductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337-350.  doi: 10.1016/j.anihpc.2009.09.012.  Google Scholar

[9]

D. FangR. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows, Nonlinear Anal., 75 (2012), 3130-3141.  doi: 10.1016/j.na.2011.12.011.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of Navier-Stokes Equations: Linearized Steady Problems, Vol. 1, Springer-Verlag, New York, 1994.  Google Scholar

[11]

C. He, J. Li and B. Lü, On the cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, preprint, arXiv: 1709.05608, (2017). Google Scholar

[12]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[13]

X. Huang and J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and Magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147-171.  doi: 10.1007/s00220-013-1791-1.  Google Scholar

[14]

X. HuangJ. Li and Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Rational Mech. Anal, 207 (2013), 303-316.  doi: 10.1007/s00205-012-0577-5.  Google Scholar

[15]

X. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.  doi: 10.1016/j.jde.2015.03.008.  Google Scholar

[16]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[17]

X. Huang and Y. Wang, Global strong solution with vacuum to the two-dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.  doi: 10.1137/120894865.  Google Scholar

[18]

X. Huang and Z. Xin, On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity, Discrete Contin. Dyn. Syst., 36 (2016), 4477-4493.  doi: 10.3934/dcds.2016.36.4477.  Google Scholar

[19]

S. Jiang and Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Acta Math. Sci. Ser. B (Engl. Ed.), 30 (2010), 1851-1864.  doi: 10.1016/S0252-9602(10)60178-6.  Google Scholar

[20]

A. V. Kajikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010.   Google Scholar

[21]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.  doi: 10.1137/S0036141004442197.  Google Scholar

[22]

H. KozonoT. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.  doi: 10.1007/s002090100332.  Google Scholar

[23]

H.-L. LiX. Xu and J. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.  doi: 10.1137/120893355.  Google Scholar

[24] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2., Compressible Models, The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[25]

B. LüZ. Xu and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.  doi: 10.1016/j.matpur.2016.10.009.  Google Scholar

[26]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.  doi: 10.1007/978-3-642-10926-3_1.  Google Scholar

[27] A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27, Oxford University Press, Oxford, 2004.   Google Scholar
[28]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[29]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[30]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch Ration. Mech. Anal., 201 (2011), 727-742.  doi: 10.1007/s00205-011-0407-1.  Google Scholar

[31]

Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214-226.  doi: 10.1016/j.nonrwa.2013.09.020.  Google Scholar

[32]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math, 51 (1998), 229-240.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[33]

Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, Comm. Math. Phys., 321 (2013), 529-241.  doi: 10.1007/s00220-012-1610-0.  Google Scholar

[34]

J. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.  doi: 10.1016/j.jde.2015.03.011.  Google Scholar

[1]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[4]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[5]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[6]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[7]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[8]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[9]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[10]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[11]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[12]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[13]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[14]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[15]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[16]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[17]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[18]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[19]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[20]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (99)
  • HTML views (212)
  • Cited by (0)

Other articles
by authors

[Back to Top]