November  2020, 25(11): 4317-4333. doi: 10.3934/dcdsb.2020099

Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum

School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China

Received  August 2011 Published  April 2020

Fund Project: The author is partially supported by NSFC grant 11801460

In this paper, we prove the unique global strong solution for the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows when the initial density can contain vacuum states, as long as the initial data satisfies some compatibility condition. Furthermore, our main result improves all the previous results where the initial density is strictly positive. The main ingredient of the proof is to use some critical Sobolev inequality of logarithmic type, which were originally due to Brezis-Gallouet in [3] and Brezis-Wainger in [4], some regularity properties of Stokes system and some delicate energy estimates for nonhomogeneous incompressible heat conducting flows.

Citation: Yongfu Wang. Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4317-4333. doi: 10.3934/dcdsb.2020099
References:
[1]

S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosibirsk State University, Novosibirsk, U.S.S.R., 1973. Google Scholar

[2]

S. A. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids., North-Holland Publishing Co., Amsterdam, 1990.  Google Scholar

[3]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[4]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar

[5]

Y. Cho and H. Kim, Existence result for heat-conducting viscous incompressible fluid with vacuum, J. Korean Math. Soc., 45 (2008), 645-681.  doi: 10.4134/JKMS.2008.45.3.645.  Google Scholar

[6]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[7]

L. Du and Y. Wang, A blowup criterion for viscous, compressible, and heat-conductive magnetohydrodynamic flows, J. Math. Phys., 56 (2015), 091503, 20 pp. doi: 10.1063/1.4928869.  Google Scholar

[8]

J. FanS. Jiang and Y. Ou, A blow-up criterion for compressible viscous heatconductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337-350.  doi: 10.1016/j.anihpc.2009.09.012.  Google Scholar

[9]

D. FangR. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows, Nonlinear Anal., 75 (2012), 3130-3141.  doi: 10.1016/j.na.2011.12.011.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of Navier-Stokes Equations: Linearized Steady Problems, Vol. 1, Springer-Verlag, New York, 1994.  Google Scholar

[11]

C. He, J. Li and B. Lü, On the cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, preprint, arXiv: 1709.05608, (2017). Google Scholar

[12]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[13]

X. Huang and J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and Magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147-171.  doi: 10.1007/s00220-013-1791-1.  Google Scholar

[14]

X. HuangJ. Li and Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Rational Mech. Anal, 207 (2013), 303-316.  doi: 10.1007/s00205-012-0577-5.  Google Scholar

[15]

X. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.  doi: 10.1016/j.jde.2015.03.008.  Google Scholar

[16]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[17]

X. Huang and Y. Wang, Global strong solution with vacuum to the two-dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.  doi: 10.1137/120894865.  Google Scholar

[18]

X. Huang and Z. Xin, On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity, Discrete Contin. Dyn. Syst., 36 (2016), 4477-4493.  doi: 10.3934/dcds.2016.36.4477.  Google Scholar

[19]

S. Jiang and Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Acta Math. Sci. Ser. B (Engl. Ed.), 30 (2010), 1851-1864.  doi: 10.1016/S0252-9602(10)60178-6.  Google Scholar

[20]

A. V. Kajikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010.   Google Scholar

[21]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.  doi: 10.1137/S0036141004442197.  Google Scholar

[22]

H. KozonoT. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.  doi: 10.1007/s002090100332.  Google Scholar

[23]

H.-L. LiX. Xu and J. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.  doi: 10.1137/120893355.  Google Scholar

[24] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2., Compressible Models, The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[25]

B. LüZ. Xu and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.  doi: 10.1016/j.matpur.2016.10.009.  Google Scholar

[26]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.  doi: 10.1007/978-3-642-10926-3_1.  Google Scholar

[27] A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27, Oxford University Press, Oxford, 2004.   Google Scholar
[28]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[29]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[30]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch Ration. Mech. Anal., 201 (2011), 727-742.  doi: 10.1007/s00205-011-0407-1.  Google Scholar

[31]

Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214-226.  doi: 10.1016/j.nonrwa.2013.09.020.  Google Scholar

[32]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math, 51 (1998), 229-240.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[33]

Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, Comm. Math. Phys., 321 (2013), 529-241.  doi: 10.1007/s00220-012-1610-0.  Google Scholar

[34]

J. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.  doi: 10.1016/j.jde.2015.03.011.  Google Scholar

show all references

References:
[1]

S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosibirsk State University, Novosibirsk, U.S.S.R., 1973. Google Scholar

[2]

S. A. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids., North-Holland Publishing Co., Amsterdam, 1990.  Google Scholar

[3]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[4]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar

[5]

Y. Cho and H. Kim, Existence result for heat-conducting viscous incompressible fluid with vacuum, J. Korean Math. Soc., 45 (2008), 645-681.  doi: 10.4134/JKMS.2008.45.3.645.  Google Scholar

[6]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[7]

L. Du and Y. Wang, A blowup criterion for viscous, compressible, and heat-conductive magnetohydrodynamic flows, J. Math. Phys., 56 (2015), 091503, 20 pp. doi: 10.1063/1.4928869.  Google Scholar

[8]

J. FanS. Jiang and Y. Ou, A blow-up criterion for compressible viscous heatconductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337-350.  doi: 10.1016/j.anihpc.2009.09.012.  Google Scholar

[9]

D. FangR. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows, Nonlinear Anal., 75 (2012), 3130-3141.  doi: 10.1016/j.na.2011.12.011.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of Navier-Stokes Equations: Linearized Steady Problems, Vol. 1, Springer-Verlag, New York, 1994.  Google Scholar

[11]

C. He, J. Li and B. Lü, On the cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, preprint, arXiv: 1709.05608, (2017). Google Scholar

[12]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[13]

X. Huang and J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and Magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147-171.  doi: 10.1007/s00220-013-1791-1.  Google Scholar

[14]

X. HuangJ. Li and Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Rational Mech. Anal, 207 (2013), 303-316.  doi: 10.1007/s00205-012-0577-5.  Google Scholar

[15]

X. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.  doi: 10.1016/j.jde.2015.03.008.  Google Scholar

[16]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[17]

X. Huang and Y. Wang, Global strong solution with vacuum to the two-dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.  doi: 10.1137/120894865.  Google Scholar

[18]

X. Huang and Z. Xin, On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity, Discrete Contin. Dyn. Syst., 36 (2016), 4477-4493.  doi: 10.3934/dcds.2016.36.4477.  Google Scholar

[19]

S. Jiang and Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Acta Math. Sci. Ser. B (Engl. Ed.), 30 (2010), 1851-1864.  doi: 10.1016/S0252-9602(10)60178-6.  Google Scholar

[20]

A. V. Kajikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010.   Google Scholar

[21]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.  doi: 10.1137/S0036141004442197.  Google Scholar

[22]

H. KozonoT. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.  doi: 10.1007/s002090100332.  Google Scholar

[23]

H.-L. LiX. Xu and J. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.  doi: 10.1137/120893355.  Google Scholar

[24] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2., Compressible Models, The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[25]

B. LüZ. Xu and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.  doi: 10.1016/j.matpur.2016.10.009.  Google Scholar

[26]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.  doi: 10.1007/978-3-642-10926-3_1.  Google Scholar

[27] A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27, Oxford University Press, Oxford, 2004.   Google Scholar
[28]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[29]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[30]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch Ration. Mech. Anal., 201 (2011), 727-742.  doi: 10.1007/s00205-011-0407-1.  Google Scholar

[31]

Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214-226.  doi: 10.1016/j.nonrwa.2013.09.020.  Google Scholar

[32]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math, 51 (1998), 229-240.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[33]

Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, Comm. Math. Phys., 321 (2013), 529-241.  doi: 10.1007/s00220-012-1610-0.  Google Scholar

[34]

J. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.  doi: 10.1016/j.jde.2015.03.011.  Google Scholar

[1]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[2]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[3]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020163

[4]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[5]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[6]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[7]

Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 4579-4596. doi: 10.3934/dcds.2020193

[8]

Yuming Qin, Lan Huang, Shuxian Deng, Zhiyong Ma, Xiaoke Su, Xinguang Yang. Interior regularity of the compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 163-192. doi: 10.3934/dcdss.2009.2.163

[9]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[10]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[11]

Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537

[12]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[13]

Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263

[14]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[15]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[16]

Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure & Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459

[17]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[18]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217

[19]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[20]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

2019 Impact Factor: 1.27

Article outline

[Back to Top]