November  2020, 25(11): 4361-4382. doi: 10.3934/dcdsb.2020101

Positive periodic solution for generalized Basener-Ross model

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China

* Corresponding author: Zhibo Cheng

Received  September 2019 Revised  November 2019 Published  April 2020

Fund Project: The first author is supported by National Natural Science Foundation of China (11501170), China Postdoctoral Science Foundation funded project (2016M590886), Young backbone teachers of colleges and universities in Henan Province (2017GGJS057), Fundamental Research Funds for the Universities of Henan Province (NSFRF170302)

This paper is devoted to the existence of at least one positive periodic solution for generalized Basener-Ross model with time-dependent coefficients. Our proof is based on Manásevich-Mawhin continuation theorem, Leray-Schauder alternative principle, fixed point theorem in cones. Moreover, we obtain that there are at least two positive periodic solutions for this model.

Citation: Zhibo Cheng, Xiaoxiao Cui. Positive periodic solution for generalized Basener-Ross model. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4361-4382. doi: 10.3934/dcdsb.2020101
References:
[1]

P. Amarasekare, Effects of temperature on consumer-resource interactions, J. Animal Ecology, 84 (2015), 665-679.  doi: 10.1111/1365-2656.12320.  Google Scholar

[2]

B. Basener and D. S. Ross, Booming and crashing populations and Easter Island, SIAM J. Appl. Math., 65 (2004/05), 684-701.  doi: 10.1137/S0036139903426952.  Google Scholar

[3]

M. ChenM. FanX. Yuan and H. Zhu, Effect of seasonal changing temperature on the growth of phytoplankton, Math. Biosci. Eng., 14 (2017), 1091-1117.  doi: 10.3934/mbe.2017057.  Google Scholar

[4]

Z. Cheng and F. Li, Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Art. 134, 19 pp. doi: 10.1007/s00009-018-1184-y.  Google Scholar

[5]

Z. Cheng and J. Ren, Periodic solution for second order damped differential equations with attractive-repulsive singularities, Rocky Mountain J. Math., 48 (2018), 753-768.  doi: 10.1216/RMJ-2018-48-3-753.  Google Scholar

[6]

A. GranasR. B. Guenther and J. W. Lee, Some general existence principles in the Carathéodory theory of nonlinear differential systems, J. Math. Pures Appl., 70 (1991), 153-196.   Google Scholar

[7]

F. Güngör and P. J. Torres, Integrability of the Basener-Ross model with time-dependent coefficients, SeMA J., 76 (2019), 485-493.  doi: 10.1007/s40324-019-00187-w.  Google Scholar

[8]

A. HuppertB. BlasiusR. Olinky and L. Stone, A model for seasonal phytoplankton blooms, J. Theoret. Biol., 236 (2005), 276-290.  doi: 10.1016/j.jtbi.2005.03.012.  Google Scholar

[9]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with $p$-Laplacian-like operators, J. Differential Equations, 145 (1998), 367-393.  doi: 10.1006/jdeq.1998.3425.  Google Scholar

[10]

D. O'Regan, Existence Theory for Nonlinear Ordinary Differential Equations, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-94-017-1517-1.  Google Scholar

[11]

J. RenD. Zhu and H. Wang, Spreading-vanishing dichotomy in information diffusion in online social networks with intervention, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1843-1865.  doi: 10.3934/dcdsb.2018240.  Google Scholar

[12]

Y. WangH. Lian and W. Ge, Periodic solutions for a second order nonlinear functional differential equation, Appl. Math. Lett., 20 (2007), 110-115.  doi: 10.1016/j.aml.2006.02.028.  Google Scholar

[13]

Y. Xu, D. Zhu and J. Ren, On a reaction-diffusion-advection system: Fixed boundary or free boundary, Electron. J. Qual. Theory Differ. Equ., (2018), Paper No. 26, 31 pp. doi: 10.14232/ejqtde.2018.1.26.  Google Scholar

show all references

References:
[1]

P. Amarasekare, Effects of temperature on consumer-resource interactions, J. Animal Ecology, 84 (2015), 665-679.  doi: 10.1111/1365-2656.12320.  Google Scholar

[2]

B. Basener and D. S. Ross, Booming and crashing populations and Easter Island, SIAM J. Appl. Math., 65 (2004/05), 684-701.  doi: 10.1137/S0036139903426952.  Google Scholar

[3]

M. ChenM. FanX. Yuan and H. Zhu, Effect of seasonal changing temperature on the growth of phytoplankton, Math. Biosci. Eng., 14 (2017), 1091-1117.  doi: 10.3934/mbe.2017057.  Google Scholar

[4]

Z. Cheng and F. Li, Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Art. 134, 19 pp. doi: 10.1007/s00009-018-1184-y.  Google Scholar

[5]

Z. Cheng and J. Ren, Periodic solution for second order damped differential equations with attractive-repulsive singularities, Rocky Mountain J. Math., 48 (2018), 753-768.  doi: 10.1216/RMJ-2018-48-3-753.  Google Scholar

[6]

A. GranasR. B. Guenther and J. W. Lee, Some general existence principles in the Carathéodory theory of nonlinear differential systems, J. Math. Pures Appl., 70 (1991), 153-196.   Google Scholar

[7]

F. Güngör and P. J. Torres, Integrability of the Basener-Ross model with time-dependent coefficients, SeMA J., 76 (2019), 485-493.  doi: 10.1007/s40324-019-00187-w.  Google Scholar

[8]

A. HuppertB. BlasiusR. Olinky and L. Stone, A model for seasonal phytoplankton blooms, J. Theoret. Biol., 236 (2005), 276-290.  doi: 10.1016/j.jtbi.2005.03.012.  Google Scholar

[9]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with $p$-Laplacian-like operators, J. Differential Equations, 145 (1998), 367-393.  doi: 10.1006/jdeq.1998.3425.  Google Scholar

[10]

D. O'Regan, Existence Theory for Nonlinear Ordinary Differential Equations, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-94-017-1517-1.  Google Scholar

[11]

J. RenD. Zhu and H. Wang, Spreading-vanishing dichotomy in information diffusion in online social networks with intervention, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1843-1865.  doi: 10.3934/dcdsb.2018240.  Google Scholar

[12]

Y. WangH. Lian and W. Ge, Periodic solutions for a second order nonlinear functional differential equation, Appl. Math. Lett., 20 (2007), 110-115.  doi: 10.1016/j.aml.2006.02.028.  Google Scholar

[13]

Y. Xu, D. Zhu and J. Ren, On a reaction-diffusion-advection system: Fixed boundary or free boundary, Electron. J. Qual. Theory Differ. Equ., (2018), Paper No. 26, 31 pp. doi: 10.14232/ejqtde.2018.1.26.  Google Scholar

[1]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[2]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[3]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[4]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[5]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[6]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[7]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[10]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[11]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[12]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[13]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[14]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[15]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[16]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[17]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[18]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[19]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[20]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (98)
  • HTML views (239)
  • Cited by (0)

Other articles
by authors

[Back to Top]