-
Previous Article
Bifurcation analysis of a tumor-model free boundary problem with a nonlinear boundary condition
- DCDS-B Home
- This Issue
-
Next Article
Positive periodic solution for generalized Basener-Ross model
Large time behavior in a predator-prey system with indirect pursuit-evasion interaction
1. | College of Information and Technology, Donghua University, Shanghai 200051, China |
2. | School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, P.R. China |
3. | Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany |
$ \Omega\subset \mathbb{R}^n $ |
$ \begin{eqnarray*} \left\{ \begin{array}{l} u_t = \Delta u -\chi\nabla \cdot(u \nabla w) +u(\lambda -u+a v), \\ v_t = \Delta v +\xi \nabla \cdot(v\nabla z) +v(\mu-v-b u), \\ 0 = \Delta w -w +v, \\ 0 = \Delta z -z +u, \end{array} \right. \end{eqnarray*} $ |
$ \chi, \xi, \lambda, \mu $ |
$ a $ |
$ b $ |
$ n\le 3 $ |
$ b\lambda<\mu $ |
$ \chi $ |
$ \xi $ |
$ b\lambda>\mu $ |
$ \chi $ |
$ \xi $ |
$ (u, v) $ |
$ u\not\equiv 0 $ |
$ (\lambda, 0) $ |
$ t\to \infty $ |
References:
[1] |
P. Amorim, B. Telch and L. M. Villada,
A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114-5145.
doi: 10.3934/mbe.2019257. |
[2] |
H. Bréezis and W. A. Strauss,
Semilinear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.
doi: 10.2969/jmsj/02540565. |
[3] |
T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system. Parabolic and Navier-Stokes equations, Part 1, Polish Acad. Sci. Inst. Math., Banach Center Publ., 81 (2008), 105–117.
doi: 10.4064/bc81-0-7. |
[4] |
T. Cieślak and M. Winkler,
Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.
doi: 10.1088/0951-7715/21/5/009. |
[5] |
A. Friedman, Partial Differential Equations, Holt, Rinehart & Winston, Inc., New York-Montreal, Que.-London, 1969. |
[6] |
T. Goudon, B. Nkonga, M. Rascle and M. Ribot,
Self-organized populations interacting under pursuit-evasion dynamics, Phys. D, 304/305 (2015), 1-22.
doi: 10.1016/j.physd.2015.03.012. |
[7] |
T. Goudon and L. Urrutia,
Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253-2286.
doi: 10.4310/CMS.2016.v14.n8.a7. |
[8] |
X. He and S. Zheng,
Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77.
doi: 10.1016/j.aml.2015.04.017. |
[9] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.
|
[10] |
D. Horstmann,
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.
|
[11] |
W. Jäger and S. Luckhaus,
On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.
doi: 10.1090/S0002-9947-1992-1046835-6. |
[12] |
H.-Y. Jin and Z.-A. Wang,
Global stability of prey-taxis systems, J. Differential Equations, 262 (2017), 1257-1290.
doi: 10.1016/j.jde.2016.10.010. |
[13] |
P. Kareiva and G. Odell,
Swarms of predators exhibit `preytaxis' if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.
doi: 10.1086/284707. |
[14] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[15] |
Y. Lou and W.-M. Ni,
Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[16] |
Y. Tao,
Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056-2064.
doi: 10.1016/j.nonrwa.2009.05.005. |
[17] |
Y. Tao and Z.-A. Wang,
Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.
doi: 10.1142/S0218202512500443. |
[18] |
Y. Tao and M. Winkler,
Boundedness and stabilization in a population model with cross-diffusion for one species, Proc. London Math. Soc., 119 (2019), 1598-1632.
doi: 10.1112/plms.12276. |
[19] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[20] |
Y. Tao and M. Winkler,
Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.
doi: 10.3934/dcdsb.2015.20.3165. |
[21] |
Y. Tao and M. Winkler,
Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.
doi: 10.1016/j.jde.2011.07.010. |
[22] |
Y. Tao and M. Winkler,
Global smooth solvability of a parabolic-elliptic nutrient taxis system in domains of arbitrary dimension, J. Differential Equations, 267 (2019), 388-406.
doi: 10.1016/j.jde.2019.01.014. |
[23] |
M. A. Tsyganov, J. Brindley, A. V. Holden and V. N. Biktashev, Quasi-soliton interaction of pursuit-evasion waves in a predator-prey system, Phys. Rev. Lett., 91 (2003), 218102.
doi: 10.1103/PhysRevLett.91.218102. |
[24] |
M. A. Tsyganov, I. B. Kresteva, A. B. Medvinsky and G. R. Ivanitsky, A novel mode bacterial population wave interaction, Dokl. Akad. Nauk, 333 (1993), 532-536. Google Scholar |
[25] |
Y. Tyutyunov, L. Titova and R. Arditi,
A minimal model of pursuit-evasion in a predator-prey system, Math. Model. Nat. Phenom., 2 (2007), 122-134.
doi: 10.1051/mmnp:2008028. |
[26] |
M. Winkler,
Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.
doi: 10.1016/j.jde.2017.06.002. |
[27] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767, arXiv: 1112.4156v1.
doi: 10.1016/j.matpur.2013.01.020. |
[28] |
S. Wu, J. Shi and B. Wu,
Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.
doi: 10.1016/j.jde.2015.12.024. |
[29] |
T. Xiang,
Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278-299.
doi: 10.1016/j.nonrwa.2017.07.001. |
show all references
References:
[1] |
P. Amorim, B. Telch and L. M. Villada,
A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114-5145.
doi: 10.3934/mbe.2019257. |
[2] |
H. Bréezis and W. A. Strauss,
Semilinear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.
doi: 10.2969/jmsj/02540565. |
[3] |
T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system. Parabolic and Navier-Stokes equations, Part 1, Polish Acad. Sci. Inst. Math., Banach Center Publ., 81 (2008), 105–117.
doi: 10.4064/bc81-0-7. |
[4] |
T. Cieślak and M. Winkler,
Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.
doi: 10.1088/0951-7715/21/5/009. |
[5] |
A. Friedman, Partial Differential Equations, Holt, Rinehart & Winston, Inc., New York-Montreal, Que.-London, 1969. |
[6] |
T. Goudon, B. Nkonga, M. Rascle and M. Ribot,
Self-organized populations interacting under pursuit-evasion dynamics, Phys. D, 304/305 (2015), 1-22.
doi: 10.1016/j.physd.2015.03.012. |
[7] |
T. Goudon and L. Urrutia,
Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253-2286.
doi: 10.4310/CMS.2016.v14.n8.a7. |
[8] |
X. He and S. Zheng,
Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77.
doi: 10.1016/j.aml.2015.04.017. |
[9] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.
|
[10] |
D. Horstmann,
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.
|
[11] |
W. Jäger and S. Luckhaus,
On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.
doi: 10.1090/S0002-9947-1992-1046835-6. |
[12] |
H.-Y. Jin and Z.-A. Wang,
Global stability of prey-taxis systems, J. Differential Equations, 262 (2017), 1257-1290.
doi: 10.1016/j.jde.2016.10.010. |
[13] |
P. Kareiva and G. Odell,
Swarms of predators exhibit `preytaxis' if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.
doi: 10.1086/284707. |
[14] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[15] |
Y. Lou and W.-M. Ni,
Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[16] |
Y. Tao,
Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056-2064.
doi: 10.1016/j.nonrwa.2009.05.005. |
[17] |
Y. Tao and Z.-A. Wang,
Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.
doi: 10.1142/S0218202512500443. |
[18] |
Y. Tao and M. Winkler,
Boundedness and stabilization in a population model with cross-diffusion for one species, Proc. London Math. Soc., 119 (2019), 1598-1632.
doi: 10.1112/plms.12276. |
[19] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[20] |
Y. Tao and M. Winkler,
Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.
doi: 10.3934/dcdsb.2015.20.3165. |
[21] |
Y. Tao and M. Winkler,
Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.
doi: 10.1016/j.jde.2011.07.010. |
[22] |
Y. Tao and M. Winkler,
Global smooth solvability of a parabolic-elliptic nutrient taxis system in domains of arbitrary dimension, J. Differential Equations, 267 (2019), 388-406.
doi: 10.1016/j.jde.2019.01.014. |
[23] |
M. A. Tsyganov, J. Brindley, A. V. Holden and V. N. Biktashev, Quasi-soliton interaction of pursuit-evasion waves in a predator-prey system, Phys. Rev. Lett., 91 (2003), 218102.
doi: 10.1103/PhysRevLett.91.218102. |
[24] |
M. A. Tsyganov, I. B. Kresteva, A. B. Medvinsky and G. R. Ivanitsky, A novel mode bacterial population wave interaction, Dokl. Akad. Nauk, 333 (1993), 532-536. Google Scholar |
[25] |
Y. Tyutyunov, L. Titova and R. Arditi,
A minimal model of pursuit-evasion in a predator-prey system, Math. Model. Nat. Phenom., 2 (2007), 122-134.
doi: 10.1051/mmnp:2008028. |
[26] |
M. Winkler,
Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.
doi: 10.1016/j.jde.2017.06.002. |
[27] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767, arXiv: 1112.4156v1.
doi: 10.1016/j.matpur.2013.01.020. |
[28] |
S. Wu, J. Shi and B. Wu,
Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.
doi: 10.1016/j.jde.2015.12.024. |
[29] |
T. Xiang,
Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278-299.
doi: 10.1016/j.nonrwa.2017.07.001. |
[1] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[2] |
Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162 |
[3] |
Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148 |
[4] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[5] |
Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021007 |
[6] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[7] |
Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328 |
[8] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[9] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[10] |
Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030 |
[11] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[12] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[13] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[14] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[15] |
Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021002 |
[16] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[17] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[18] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[19] |
Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021006 |
[20] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]