November  2020, 25(11): 4383-4396. doi: 10.3934/dcdsb.2020102

Large time behavior in a predator-prey system with indirect pursuit-evasion interaction

1. 

College of Information and Technology, Donghua University, Shanghai 200051, China

2. 

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, P.R. China

3. 

Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany

Received  September 2019 Revised  November 2019 Published  April 2020

In a bounded domain
$ \Omega\subset \mathbb{R}^n $
with smooth boundary, this work considers the indirect pursuit-evasion model
$ \begin{eqnarray*} \left\{ \begin{array}{l} u_t = \Delta u -\chi\nabla \cdot(u \nabla w) +u(\lambda -u+a v), \\ v_t = \Delta v +\xi \nabla \cdot(v\nabla z) +v(\mu-v-b u), \\ 0 = \Delta w -w +v, \\ 0 = \Delta z -z +u, \end{array} \right. \end{eqnarray*} $
with positive parameters
$ \chi, \xi, \lambda, \mu $
,
$ a $
and
$ b $
.
It is firstly asserted that when
$ n\le 3 $
, for any given suitably regular initial data the corresponding homogeneous Neumann initial-boundary problem admits a global and bounded smooth solution. Moreover, it is shown that if
$ b\lambda<\mu $
and under some explicit smallness conditions on
$ \chi $
and
$ \xi $
, any nontrival bounded classical solution converges to the spatially homogeneous coexistence state in the large time limit; if
$ b\lambda>\mu $
, however, then under an explicit smallness assumption on
$ \chi $
but without any restriction on
$ \xi $
, any bounded classical solution
$ (u, v) $
with
$ u\not\equiv 0 $
stabilizes to
$ (\lambda, 0) $
as
$ t\to \infty $
.
Citation: Genglin Li, Youshan Tao, Michael Winkler. Large time behavior in a predator-prey system with indirect pursuit-evasion interaction. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4383-4396. doi: 10.3934/dcdsb.2020102
References:
[1]

P. AmorimB. Telch and L. M. Villada, A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114-5145.  doi: 10.3934/mbe.2019257.  Google Scholar

[2]

H. Bréezis and W. A. Strauss, Semilinear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.  Google Scholar

[3]

T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system. Parabolic and Navier-Stokes equations, Part 1, Polish Acad. Sci. Inst. Math., Banach Center Publ., 81 (2008), 105–117. doi: 10.4064/bc81-0-7.  Google Scholar

[4]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[5]

A. Friedman, Partial Differential Equations, Holt, Rinehart & Winston, Inc., New York-Montreal, Que.-London, 1969.  Google Scholar

[6]

T. GoudonB. NkongaM. Rascle and M. Ribot, Self-organized populations interacting under pursuit-evasion dynamics, Phys. D, 304/305 (2015), 1-22.  doi: 10.1016/j.physd.2015.03.012.  Google Scholar

[7]

T. Goudon and L. Urrutia, Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253-2286.  doi: 10.4310/CMS.2016.v14.n8.a7.  Google Scholar

[8]

X. He and S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77.  doi: 10.1016/j.aml.2015.04.017.  Google Scholar

[9]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.   Google Scholar

[10]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[11]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[12]

H.-Y. Jin and Z.-A. Wang, Global stability of prey-taxis systems, J. Differential Equations, 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.  Google Scholar

[13]

P. Kareiva and G. Odell, Swarms of predators exhibit `preytaxis' if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[15]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[16]

Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056-2064.  doi: 10.1016/j.nonrwa.2009.05.005.  Google Scholar

[17]

Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.  Google Scholar

[18]

Y. Tao and M. Winkler, Boundedness and stabilization in a population model with cross-diffusion for one species, Proc. London Math. Soc., 119 (2019), 1598-1632.  doi: 10.1112/plms.12276.  Google Scholar

[19]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[20]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.  Google Scholar

[21]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[22]

Y. Tao and M. Winkler, Global smooth solvability of a parabolic-elliptic nutrient taxis system in domains of arbitrary dimension, J. Differential Equations, 267 (2019), 388-406.  doi: 10.1016/j.jde.2019.01.014.  Google Scholar

[23]

M. A. Tsyganov, J. Brindley, A. V. Holden and V. N. Biktashev, Quasi-soliton interaction of pursuit-evasion waves in a predator-prey system, Phys. Rev. Lett., 91 (2003), 218102. doi: 10.1103/PhysRevLett.91.218102.  Google Scholar

[24]

M. A. TsyganovI. B. KrestevaA. B. Medvinsky and G. R. Ivanitsky, A novel mode bacterial population wave interaction, Dokl. Akad. Nauk, 333 (1993), 532-536.   Google Scholar

[25]

Y. TyutyunovL. Titova and R. Arditi, A minimal model of pursuit-evasion in a predator-prey system, Math. Model. Nat. Phenom., 2 (2007), 122-134.  doi: 10.1051/mmnp:2008028.  Google Scholar

[26]

M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.  doi: 10.1016/j.jde.2017.06.002.  Google Scholar

[27]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767, arXiv: 1112.4156v1. doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[28]

S. WuJ. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.  Google Scholar

[29]

T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278-299.  doi: 10.1016/j.nonrwa.2017.07.001.  Google Scholar

show all references

References:
[1]

P. AmorimB. Telch and L. M. Villada, A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114-5145.  doi: 10.3934/mbe.2019257.  Google Scholar

[2]

H. Bréezis and W. A. Strauss, Semilinear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.  Google Scholar

[3]

T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system. Parabolic and Navier-Stokes equations, Part 1, Polish Acad. Sci. Inst. Math., Banach Center Publ., 81 (2008), 105–117. doi: 10.4064/bc81-0-7.  Google Scholar

[4]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[5]

A. Friedman, Partial Differential Equations, Holt, Rinehart & Winston, Inc., New York-Montreal, Que.-London, 1969.  Google Scholar

[6]

T. GoudonB. NkongaM. Rascle and M. Ribot, Self-organized populations interacting under pursuit-evasion dynamics, Phys. D, 304/305 (2015), 1-22.  doi: 10.1016/j.physd.2015.03.012.  Google Scholar

[7]

T. Goudon and L. Urrutia, Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253-2286.  doi: 10.4310/CMS.2016.v14.n8.a7.  Google Scholar

[8]

X. He and S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77.  doi: 10.1016/j.aml.2015.04.017.  Google Scholar

[9]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.   Google Scholar

[10]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[11]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[12]

H.-Y. Jin and Z.-A. Wang, Global stability of prey-taxis systems, J. Differential Equations, 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.  Google Scholar

[13]

P. Kareiva and G. Odell, Swarms of predators exhibit `preytaxis' if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[15]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[16]

Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056-2064.  doi: 10.1016/j.nonrwa.2009.05.005.  Google Scholar

[17]

Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.  Google Scholar

[18]

Y. Tao and M. Winkler, Boundedness and stabilization in a population model with cross-diffusion for one species, Proc. London Math. Soc., 119 (2019), 1598-1632.  doi: 10.1112/plms.12276.  Google Scholar

[19]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[20]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.  Google Scholar

[21]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[22]

Y. Tao and M. Winkler, Global smooth solvability of a parabolic-elliptic nutrient taxis system in domains of arbitrary dimension, J. Differential Equations, 267 (2019), 388-406.  doi: 10.1016/j.jde.2019.01.014.  Google Scholar

[23]

M. A. Tsyganov, J. Brindley, A. V. Holden and V. N. Biktashev, Quasi-soliton interaction of pursuit-evasion waves in a predator-prey system, Phys. Rev. Lett., 91 (2003), 218102. doi: 10.1103/PhysRevLett.91.218102.  Google Scholar

[24]

M. A. TsyganovI. B. KrestevaA. B. Medvinsky and G. R. Ivanitsky, A novel mode bacterial population wave interaction, Dokl. Akad. Nauk, 333 (1993), 532-536.   Google Scholar

[25]

Y. TyutyunovL. Titova and R. Arditi, A minimal model of pursuit-evasion in a predator-prey system, Math. Model. Nat. Phenom., 2 (2007), 122-134.  doi: 10.1051/mmnp:2008028.  Google Scholar

[26]

M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.  doi: 10.1016/j.jde.2017.06.002.  Google Scholar

[27]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767, arXiv: 1112.4156v1. doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[28]

S. WuJ. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.  Google Scholar

[29]

T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278-299.  doi: 10.1016/j.nonrwa.2017.07.001.  Google Scholar

[1]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[2]

Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050

[3]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[4]

Hai-Yang Jin, Tian Xiang. Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3071-3085. doi: 10.3934/dcdsb.2017197

[5]

Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031

[6]

Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic & Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034

[7]

Rachidi B. Salako. Traveling waves of a full parabolic attraction-repulsion chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5945-5973. doi: 10.3934/dcds.2019260

[8]

Lianzhang Bao, Wenxian Shen. Logistic type attraction-repulsion chemotaxis systems with a free boundary or unbounded boundary. I. Asymptotic dynamics in fixed unbounded domain. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 1107-1130. doi: 10.3934/dcds.2020072

[9]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[10]

Peter A. Braza. Predator-Prey Dynamics with Disease in the Prey. Mathematical Biosciences & Engineering, 2005, 2 (4) : 703-717. doi: 10.3934/mbe.2005.2.703

[11]

Fei Xu, Ross Cressman, Vlastimil Křivan. Evolution of mobility in predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3397-3432. doi: 10.3934/dcdsb.2014.19.3397

[12]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

[13]

Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693

[14]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[15]

Julián López-Gómez, Eduardo Muñoz-Hernández. A spatially heterogeneous predator-prey model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020081

[16]

Yu-Shuo Chen, Jong-Shenq Guo, Masahiko Shimojo. Recent developments on a singular predator-prey model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020040

[17]

Dongmei Xiao, Kate Fang Zhang. Multiple bifurcations of a predator-prey system. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 417-433. doi: 10.3934/dcdsb.2007.8.417

[18]

Fasma Diele, Carmela Marangi. Positive symplectic integrators for predator-prey dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2661-2678. doi: 10.3934/dcdsb.2017185

[19]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

[20]

Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure & Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (123)
  • HTML views (214)
  • Cited by (0)

Other articles
by authors

[Back to Top]