May  2020, 25(5): 2021-2021. doi: 10.3934/dcdsb.2020105

Corrigendum to "Singularity of controls in a simple model of acquired chemotherapy resistance"

1. 

Inter-Faculty Individual Doctoral Studies in Natural Sciences and Mathematics, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland

2. 

Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, 10-710 Olsztyn, Poland

3. 

Faculty of Mathematics, Informatics and Mechanics, Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

* Corresponding author

Received  January 2020 Published  February 2020

Citation: Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Corrigendum to "Singularity of controls in a simple model of acquired chemotherapy resistance". Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 2021-2021. doi: 10.3934/dcdsb.2020105
References:
[1]

Piotr BajgerMariusz Bodzioch and Urszula Foryś, Singularity of controls in a simple model of acquired chemotherapy resistance, Discrete & Continuous Dynamical Systems - B, 24 (2019), 2039-2052.  doi: 10.3934/DCDSB.2019083.  Google Scholar

show all references

References:
[1]

Piotr BajgerMariusz Bodzioch and Urszula Foryś, Singularity of controls in a simple model of acquired chemotherapy resistance, Discrete & Continuous Dynamical Systems - B, 24 (2019), 2039-2052.  doi: 10.3934/DCDSB.2019083.  Google Scholar

[1]

Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Singularity of controls in a simple model of acquired chemotherapy resistance. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2039-2052. doi: 10.3934/dcdsb.2019083

[2]

Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3-compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544-553. doi: 10.3934/proc.2003.2003.544

[3]

Arturo Alvarez-Arenas, Konstantin E. Starkov, Gabriel F. Calvo, Juan Belmonte-Beitia. Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2017-2038. doi: 10.3934/dcdsb.2019082

[4]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[5]

Luis A. Fernández, Cecilia Pola. Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1563-1588. doi: 10.3934/dcdsb.2014.19.1563

[6]

Urszula Ledzewicz, Mozhdeh Sadat Faraji Mosalman, Heinz Schättler. Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 1031-1051. doi: 10.3934/dcdsb.2013.18.1031

[7]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

[8]

Suresh P. Sethi, Houmin Yan, H. Y. Zhang. Corrigendum. Journal of Industrial & Management Optimization, 2005, 1 (4) : 588-588. doi: 10.3934/jimo.2005.1.588

[9]

Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561-578. doi: 10.3934/mbe.2005.2.561

[10]

Ismail Abdulrashid, Abdallah A. M. Alsammani, Xiaoying Han. Stability analysis of a chemotherapy model with delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 989-1005. doi: 10.3934/dcdsb.2019002

[11]

Ismail Abdulrashid, Xiaoying Han. A mathematical model of chemotherapy with variable infusion. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1875-1890. doi: 10.3934/cpaa.2020082

[12]

Avner Friedman, Najat Ziyadi, Khalid Boushaba. A model of drug resistance with infection by health care workers. Mathematical Biosciences & Engineering, 2010, 7 (4) : 779-792. doi: 10.3934/mbe.2010.7.779

[13]

Grzegorz Dudziuk, Mirosław Lachowicz, Henryk Leszczyński, Zuzanna Szymańska. A simple model of collagen remodeling. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2205-2217. doi: 10.3934/dcdsb.2019091

[14]

Urszula Ledzewicz, Heinz Schättler. Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences & Engineering, 2004, 1 (1) : 95-110. doi: 10.3934/mbe.2004.1.95

[15]

Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1257-1275. doi: 10.3934/mbe.2015.12.1257

[16]

F. Berezovskaya, G. Karev, Baojun Song, Carlos Castillo-Chavez. A Simple Epidemic Model with Surprising Dynamics. Mathematical Biosciences & Engineering, 2005, 2 (1) : 133-152. doi: 10.3934/mbe.2005.2.133

[17]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[18]

Luis C. Corchón. Corrigendum to "A Malthus-Swan-Solow model of economic growth". Journal of Dynamics & Games, 2018, 5 (2) : 187-187. doi: 10.3934/jdg.2018011

[19]

Hengki Tasman, Edy Soewono, Kuntjoro Adji Sidarto, Din Syafruddin, William Oscar Rogers. A model for transmission of partial resistance to anti-malarial drugs. Mathematical Biosciences & Engineering, 2009, 6 (3) : 649-661. doi: 10.3934/mbe.2009.6.649

[20]

Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1185-1206. doi: 10.3934/mbe.2016038

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (31)
  • HTML views (97)
  • Cited by (0)

Other articles
by authors

[Back to Top]