
-
Previous Article
Mathematical analysis of an age structured heroin-cocaine epidemic model
- DCDS-B Home
- This Issue
-
Next Article
Modelling fungal competition for space:Towards prediction of community dynamics
Kink solitary solutions to a hepatitis C evolution model
1. | Research Group for Mathematical, and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania |
2. | Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain |
3. | Department of Applied Informatics, Kaunas University of Technology, Studentu 50-407, Kaunas LT-51368, Lithuania |
4. | Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA |
5. | Department of Software Engineering, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania |
The standard nonlinear hepatitis C evolution model described in (Reluga et al. 2009) is considered in this paper. The generalized differential operator technique is used to construct analytical kink solitary solutions to the governing equations coupled with multiplicative and diffusive terms. Conditions for the existence of kink solitary solutions are derived. It appears that kink solitary solutions are either in a linear or in a hyperbolic relationship. Thus, a large perturbation in the population of hepatitis infected cells does not necessarily lead to a large change in uninfected cells. Computational experiments are used to illustrate the evolution of transient solitary solutions in the hepatitis C model.
References:
[1] |
N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, 751, Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-78217-9. |
[2] |
E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Dark-bright solitons in coupled nonlinear Schrödinger equations with unequal dispersion coefficients, Phys. Rev. E, 91 (2015).
doi: 10.1103/PhysRevE.91.012924. |
[3] | F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008. Google Scholar |
[4] |
T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2010.
![]() |
[5] |
W. Feng, J. Q. Li and Y. Kishimoto, Theory on bright and dark soliton formation in strongly magnetized plasmas, Physics Plasmas, 23 (2016).
doi: 10.1063/1.4962846. |
[6] |
F. Genoud,
Extrema of the dynamic pressure in a solitary wave, Nonlinear Anal., 155 (2017), 65-71.
doi: 10.1016/j.na.2017.01.009. |
[7] |
A. M. Grundland, M. Kovalyov and M. Sussman,
Interaction of kink-type solutions of the harmonic map equations, J. Math. Phys., 35 (1994), 6774-6783.
doi: 10.1063/1.530642. |
[8] |
Y.-H. Hu and S.-Y. Lou,
Analytical descriptions of dark and gray solitons in nonlocal nonlinear media, Commun. Theor. Phys. (Beijing), 64 (2015), 665-670.
doi: 10.1088/0253-6102/64/6/665. |
[9] |
A. Kelkar, E. Yomba and R. Djeloulli,
Solitary wave solutions and modulational instability in a system of coupled complex Newell-Segel-Whitehead equations, Commun. Nonlinear Sci. Numer. Simul., 41 (2016), 118-139.
doi: 10.1016/j.cnsns.2016.04.034. |
[10] |
J. D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Ltd., Chichester, 1991. |
[11] |
A. G. López, J. M. Seoane and M. A. F. Sanjuán,
A validated mathematical model of tumor growth including tumor-host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., 76 (2014), 2884-2906.
doi: 10.1007/s11538-014-0037-5. |
[12] |
H. McCallum, N. Barlow and J. Hone,
How should pathogen transmission be modelled?, Trends Ecol. Evol., 16 (2001), 295-300.
doi: 10.1016/S0169-5347(01)02144-9. |
[13] |
Z. Navickas and L. Bikulciene,
Expressions of solutions of ordinary differential equations by standard functions, Math. Model. Anal., 11 (2006), 399-412.
doi: 10.3846/13926292.2006.9637327. |
[14] |
Z. Navickas, R. Marcinkevicius, T. Telksnys and M. Ragulskis,
Existence of second order solitary solutions to Riccati differential equations coupled with a multiplicative term, IMA. J. Appl. Math., 81 (2016), 1163-1190.
doi: 10.1093/imamat/hxw050. |
[15] |
Z. Navickas, M. Ragulskis and T. Telksnys,
Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity, Appl. Math. Comput., 283 (2016), 333-338.
doi: 10.1016/j.amc.2016.02.049. |
[16] |
Z. Navickas, R. Vilkas, T. Telksnys and M. Ragulskis,
Direct and inverse relationships between Riccati systems coupled with multiplicative terms, J. Biol. Dyn., 10 (2016), 297-313.
doi: 10.1080/17513758.2016.1181801. |
[17] |
A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2003. |
[18] |
Z. Qiao and J. Li, Negative-order KdV equation with both solitons and kink wave solutions, Europhys. Lett., 94 (2011), 50003.
doi: 10.1209/0295-5075/94/50003. |
[19] |
W. T. Reid, Riccati Differential Equations, Mathematics in Science and Engineering, 86, Academic Press, New York-London, 1972.
![]() |
[20] |
T. C. Reluga, H. Dahari and A. S. Perelson,
Analysis of hepatitis C virus infection models with hepatocyte homeostasis, SIAM J. Appl. Math., 69 (2009), 999-1023.
doi: 10.1137/080714579. |
[21] |
M. Remoissenet, Waves Called Solitons. Concepts and Experiments, Advanced Texts in Physics, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-03790-4. |
[22] |
W. H. Renninger and P. T. Rakich, Closed-form solutions and scaling laws for Kerr frequency combs, Scientific Reports, 6 (2016).
doi: 10.1038/srep24742. |
[23] |
K. Sakkaravarthi and T. Kanna, Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities, J. Math. Phys., 54 (2013), 14pp.
doi: 10.1063/1.4772611. |
[24] |
A. Scott, Encyclopedia of Nonlinear Science, Routledge, New York, 2005.
doi: 10.4324/9780203647417. |
[25] |
V. A. Vladimirov, E. V. Kutafina and A. Pudelko, Constructing soliton and kink solutions of PDE models in transport and biology, Symmetry Integrability Geom. Methods Appl., 2 (2006), 15pp.
doi: 10.3842/SIGMA.2006.061. |
[26] |
Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-6548-9. |
[27] |
G.-A. Zakeri and E. Yomba, Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations, J. Phys. Soc. Jpn., 82 (2013).
doi: 10.7566/JPSJ.82.084002. |
[28] |
S. Zdravković and G. Gligorić, Kinks and bell-type solitons in microtubules, Chaos, 35 (2016), 7pp.
doi: 10.1063/1.4953011. |
show all references
References:
[1] |
N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, 751, Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-78217-9. |
[2] |
E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Dark-bright solitons in coupled nonlinear Schrödinger equations with unequal dispersion coefficients, Phys. Rev. E, 91 (2015).
doi: 10.1103/PhysRevE.91.012924. |
[3] | F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008. Google Scholar |
[4] |
T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2010.
![]() |
[5] |
W. Feng, J. Q. Li and Y. Kishimoto, Theory on bright and dark soliton formation in strongly magnetized plasmas, Physics Plasmas, 23 (2016).
doi: 10.1063/1.4962846. |
[6] |
F. Genoud,
Extrema of the dynamic pressure in a solitary wave, Nonlinear Anal., 155 (2017), 65-71.
doi: 10.1016/j.na.2017.01.009. |
[7] |
A. M. Grundland, M. Kovalyov and M. Sussman,
Interaction of kink-type solutions of the harmonic map equations, J. Math. Phys., 35 (1994), 6774-6783.
doi: 10.1063/1.530642. |
[8] |
Y.-H. Hu and S.-Y. Lou,
Analytical descriptions of dark and gray solitons in nonlocal nonlinear media, Commun. Theor. Phys. (Beijing), 64 (2015), 665-670.
doi: 10.1088/0253-6102/64/6/665. |
[9] |
A. Kelkar, E. Yomba and R. Djeloulli,
Solitary wave solutions and modulational instability in a system of coupled complex Newell-Segel-Whitehead equations, Commun. Nonlinear Sci. Numer. Simul., 41 (2016), 118-139.
doi: 10.1016/j.cnsns.2016.04.034. |
[10] |
J. D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Ltd., Chichester, 1991. |
[11] |
A. G. López, J. M. Seoane and M. A. F. Sanjuán,
A validated mathematical model of tumor growth including tumor-host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., 76 (2014), 2884-2906.
doi: 10.1007/s11538-014-0037-5. |
[12] |
H. McCallum, N. Barlow and J. Hone,
How should pathogen transmission be modelled?, Trends Ecol. Evol., 16 (2001), 295-300.
doi: 10.1016/S0169-5347(01)02144-9. |
[13] |
Z. Navickas and L. Bikulciene,
Expressions of solutions of ordinary differential equations by standard functions, Math. Model. Anal., 11 (2006), 399-412.
doi: 10.3846/13926292.2006.9637327. |
[14] |
Z. Navickas, R. Marcinkevicius, T. Telksnys and M. Ragulskis,
Existence of second order solitary solutions to Riccati differential equations coupled with a multiplicative term, IMA. J. Appl. Math., 81 (2016), 1163-1190.
doi: 10.1093/imamat/hxw050. |
[15] |
Z. Navickas, M. Ragulskis and T. Telksnys,
Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity, Appl. Math. Comput., 283 (2016), 333-338.
doi: 10.1016/j.amc.2016.02.049. |
[16] |
Z. Navickas, R. Vilkas, T. Telksnys and M. Ragulskis,
Direct and inverse relationships between Riccati systems coupled with multiplicative terms, J. Biol. Dyn., 10 (2016), 297-313.
doi: 10.1080/17513758.2016.1181801. |
[17] |
A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2003. |
[18] |
Z. Qiao and J. Li, Negative-order KdV equation with both solitons and kink wave solutions, Europhys. Lett., 94 (2011), 50003.
doi: 10.1209/0295-5075/94/50003. |
[19] |
W. T. Reid, Riccati Differential Equations, Mathematics in Science and Engineering, 86, Academic Press, New York-London, 1972.
![]() |
[20] |
T. C. Reluga, H. Dahari and A. S. Perelson,
Analysis of hepatitis C virus infection models with hepatocyte homeostasis, SIAM J. Appl. Math., 69 (2009), 999-1023.
doi: 10.1137/080714579. |
[21] |
M. Remoissenet, Waves Called Solitons. Concepts and Experiments, Advanced Texts in Physics, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-03790-4. |
[22] |
W. H. Renninger and P. T. Rakich, Closed-form solutions and scaling laws for Kerr frequency combs, Scientific Reports, 6 (2016).
doi: 10.1038/srep24742. |
[23] |
K. Sakkaravarthi and T. Kanna, Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities, J. Math. Phys., 54 (2013), 14pp.
doi: 10.1063/1.4772611. |
[24] |
A. Scott, Encyclopedia of Nonlinear Science, Routledge, New York, 2005.
doi: 10.4324/9780203647417. |
[25] |
V. A. Vladimirov, E. V. Kutafina and A. Pudelko, Constructing soliton and kink solutions of PDE models in transport and biology, Symmetry Integrability Geom. Methods Appl., 2 (2006), 15pp.
doi: 10.3842/SIGMA.2006.061. |
[26] |
Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-6548-9. |
[27] |
G.-A. Zakeri and E. Yomba, Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations, J. Phys. Soc. Jpn., 82 (2013).
doi: 10.7566/JPSJ.82.084002. |
[28] |
S. Zdravković and G. Gligorić, Kinks and bell-type solitons in microtubules, Chaos, 35 (2016), 7pp.
doi: 10.1063/1.4953011. |









[1] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[2] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[3] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[4] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[5] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[6] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[7] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[8] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[9] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[10] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[11] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[12] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[13] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[14] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[15] |
Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021006 |
[16] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[17] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[18] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
[19] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[20] |
Aisling McGlinchey, Oliver Mason. Observations on the bias of nonnegative mechanisms for differential privacy. Foundations of Data Science, 2020, 2 (4) : 429-442. doi: 10.3934/fods.2020020 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]