November  2020, 25(11): 4427-4447. doi: 10.3934/dcdsb.2020106

Kink solitary solutions to a hepatitis C evolution model

1. 

Research Group for Mathematical, and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania

2. 

Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain

3. 

Department of Applied Informatics, Kaunas University of Technology, Studentu 50-407, Kaunas LT-51368, Lithuania

4. 

Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA

5. 

Department of Software Engineering, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania

* Corresponding author: Tadas Telksnys (tadas.telksnys@ktu.lt)

Received  July 2017 Published  March 2020

The standard nonlinear hepatitis C evolution model described in (Reluga et al. 2009) is considered in this paper. The generalized differential operator technique is used to construct analytical kink solitary solutions to the governing equations coupled with multiplicative and diffusive terms. Conditions for the existence of kink solitary solutions are derived. It appears that kink solitary solutions are either in a linear or in a hyperbolic relationship. Thus, a large perturbation in the population of hepatitis infected cells does not necessarily lead to a large change in uninfected cells. Computational experiments are used to illustrate the evolution of transient solitary solutions in the hepatitis C model.

Citation: Tadas Telksnys, Zenonas Navickas, Miguel A. F. Sanjuán, Romas Marcinkevicius, Minvydas Ragulskis. Kink solitary solutions to a hepatitis C evolution model. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4427-4447. doi: 10.3934/dcdsb.2020106
References:
[1]

N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, 751, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-78217-9.  Google Scholar

[2]

E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Dark-bright solitons in coupled nonlinear Schrödinger equations with unequal dispersion coefficients, Phys. Rev. E, 91 (2015). doi: 10.1103/PhysRevE.91.012924.  Google Scholar

[3] F. CourchampL. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008.   Google Scholar
[4] T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2010.   Google Scholar
[5]

W. Feng, J. Q. Li and Y. Kishimoto, Theory on bright and dark soliton formation in strongly magnetized plasmas, Physics Plasmas, 23 (2016). doi: 10.1063/1.4962846.  Google Scholar

[6]

F. Genoud, Extrema of the dynamic pressure in a solitary wave, Nonlinear Anal., 155 (2017), 65-71.  doi: 10.1016/j.na.2017.01.009.  Google Scholar

[7]

A. M. GrundlandM. Kovalyov and M. Sussman, Interaction of kink-type solutions of the harmonic map equations, J. Math. Phys., 35 (1994), 6774-6783.  doi: 10.1063/1.530642.  Google Scholar

[8]

Y.-H. Hu and S.-Y. Lou, Analytical descriptions of dark and gray solitons in nonlocal nonlinear media, Commun. Theor. Phys. (Beijing), 64 (2015), 665-670.  doi: 10.1088/0253-6102/64/6/665.  Google Scholar

[9]

A. KelkarE. Yomba and R. Djeloulli, Solitary wave solutions and modulational instability in a system of coupled complex Newell-Segel-Whitehead equations, Commun. Nonlinear Sci. Numer. Simul., 41 (2016), 118-139.  doi: 10.1016/j.cnsns.2016.04.034.  Google Scholar

[10]

J. D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Ltd., Chichester, 1991.  Google Scholar

[11]

A. G. LópezJ. M. Seoane and M. A. F. Sanjuán, A validated mathematical model of tumor growth including tumor-host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., 76 (2014), 2884-2906.  doi: 10.1007/s11538-014-0037-5.  Google Scholar

[12]

H. McCallumN. Barlow and J. Hone, How should pathogen transmission be modelled?, Trends Ecol. Evol., 16 (2001), 295-300.  doi: 10.1016/S0169-5347(01)02144-9.  Google Scholar

[13]

Z. Navickas and L. Bikulciene, Expressions of solutions of ordinary differential equations by standard functions, Math. Model. Anal., 11 (2006), 399-412.  doi: 10.3846/13926292.2006.9637327.  Google Scholar

[14]

Z. NavickasR. MarcinkeviciusT. Telksnys and M. Ragulskis, Existence of second order solitary solutions to Riccati differential equations coupled with a multiplicative term, IMA. J. Appl. Math., 81 (2016), 1163-1190.  doi: 10.1093/imamat/hxw050.  Google Scholar

[15]

Z. NavickasM. Ragulskis and T. Telksnys, Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity, Appl. Math. Comput., 283 (2016), 333-338.  doi: 10.1016/j.amc.2016.02.049.  Google Scholar

[16]

Z. NavickasR. VilkasT. Telksnys and M. Ragulskis, Direct and inverse relationships between Riccati systems coupled with multiplicative terms, J. Biol. Dyn., 10 (2016), 297-313.  doi: 10.1080/17513758.2016.1181801.  Google Scholar

[17]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2003.  Google Scholar

[18]

Z. Qiao and J. Li, Negative-order KdV equation with both solitons and kink wave solutions, Europhys. Lett., 94 (2011), 50003. doi: 10.1209/0295-5075/94/50003.  Google Scholar

[19] W. T. Reid, Riccati Differential Equations, Mathematics in Science and Engineering, 86, Academic Press, New York-London, 1972.   Google Scholar
[20]

T. C. RelugaH. Dahari and A. S. Perelson, Analysis of hepatitis C virus infection models with hepatocyte homeostasis, SIAM J. Appl. Math., 69 (2009), 999-1023.  doi: 10.1137/080714579.  Google Scholar

[21]

M. Remoissenet, Waves Called Solitons. Concepts and Experiments, Advanced Texts in Physics, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-03790-4.  Google Scholar

[22]

W. H. Renninger and P. T. Rakich, Closed-form solutions and scaling laws for Kerr frequency combs, Scientific Reports, 6 (2016). doi: 10.1038/srep24742.  Google Scholar

[23]

K. Sakkaravarthi and T. Kanna, Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities, J. Math. Phys., 54 (2013), 14pp. doi: 10.1063/1.4772611.  Google Scholar

[24]

A. Scott, Encyclopedia of Nonlinear Science, Routledge, New York, 2005. doi: 10.4324/9780203647417.  Google Scholar

[25]

V. A. Vladimirov, E. V. Kutafina and A. Pudelko, Constructing soliton and kink solutions of PDE models in transport and biology, Symmetry Integrability Geom. Methods Appl., 2 (2006), 15pp. doi: 10.3842/SIGMA.2006.061.  Google Scholar

[26]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

[27]

G.-A. Zakeri and E. Yomba, Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations, J. Phys. Soc. Jpn., 82 (2013). doi: 10.7566/JPSJ.82.084002.  Google Scholar

[28]

S. Zdravković and G. Gligorić, Kinks and bell-type solitons in microtubules, Chaos, 35 (2016), 7pp. doi: 10.1063/1.4953011.  Google Scholar

show all references

References:
[1]

N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, 751, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-78217-9.  Google Scholar

[2]

E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Dark-bright solitons in coupled nonlinear Schrödinger equations with unequal dispersion coefficients, Phys. Rev. E, 91 (2015). doi: 10.1103/PhysRevE.91.012924.  Google Scholar

[3] F. CourchampL. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008.   Google Scholar
[4] T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2010.   Google Scholar
[5]

W. Feng, J. Q. Li and Y. Kishimoto, Theory on bright and dark soliton formation in strongly magnetized plasmas, Physics Plasmas, 23 (2016). doi: 10.1063/1.4962846.  Google Scholar

[6]

F. Genoud, Extrema of the dynamic pressure in a solitary wave, Nonlinear Anal., 155 (2017), 65-71.  doi: 10.1016/j.na.2017.01.009.  Google Scholar

[7]

A. M. GrundlandM. Kovalyov and M. Sussman, Interaction of kink-type solutions of the harmonic map equations, J. Math. Phys., 35 (1994), 6774-6783.  doi: 10.1063/1.530642.  Google Scholar

[8]

Y.-H. Hu and S.-Y. Lou, Analytical descriptions of dark and gray solitons in nonlocal nonlinear media, Commun. Theor. Phys. (Beijing), 64 (2015), 665-670.  doi: 10.1088/0253-6102/64/6/665.  Google Scholar

[9]

A. KelkarE. Yomba and R. Djeloulli, Solitary wave solutions and modulational instability in a system of coupled complex Newell-Segel-Whitehead equations, Commun. Nonlinear Sci. Numer. Simul., 41 (2016), 118-139.  doi: 10.1016/j.cnsns.2016.04.034.  Google Scholar

[10]

J. D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Ltd., Chichester, 1991.  Google Scholar

[11]

A. G. LópezJ. M. Seoane and M. A. F. Sanjuán, A validated mathematical model of tumor growth including tumor-host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., 76 (2014), 2884-2906.  doi: 10.1007/s11538-014-0037-5.  Google Scholar

[12]

H. McCallumN. Barlow and J. Hone, How should pathogen transmission be modelled?, Trends Ecol. Evol., 16 (2001), 295-300.  doi: 10.1016/S0169-5347(01)02144-9.  Google Scholar

[13]

Z. Navickas and L. Bikulciene, Expressions of solutions of ordinary differential equations by standard functions, Math. Model. Anal., 11 (2006), 399-412.  doi: 10.3846/13926292.2006.9637327.  Google Scholar

[14]

Z. NavickasR. MarcinkeviciusT. Telksnys and M. Ragulskis, Existence of second order solitary solutions to Riccati differential equations coupled with a multiplicative term, IMA. J. Appl. Math., 81 (2016), 1163-1190.  doi: 10.1093/imamat/hxw050.  Google Scholar

[15]

Z. NavickasM. Ragulskis and T. Telksnys, Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity, Appl. Math. Comput., 283 (2016), 333-338.  doi: 10.1016/j.amc.2016.02.049.  Google Scholar

[16]

Z. NavickasR. VilkasT. Telksnys and M. Ragulskis, Direct and inverse relationships between Riccati systems coupled with multiplicative terms, J. Biol. Dyn., 10 (2016), 297-313.  doi: 10.1080/17513758.2016.1181801.  Google Scholar

[17]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2003.  Google Scholar

[18]

Z. Qiao and J. Li, Negative-order KdV equation with both solitons and kink wave solutions, Europhys. Lett., 94 (2011), 50003. doi: 10.1209/0295-5075/94/50003.  Google Scholar

[19] W. T. Reid, Riccati Differential Equations, Mathematics in Science and Engineering, 86, Academic Press, New York-London, 1972.   Google Scholar
[20]

T. C. RelugaH. Dahari and A. S. Perelson, Analysis of hepatitis C virus infection models with hepatocyte homeostasis, SIAM J. Appl. Math., 69 (2009), 999-1023.  doi: 10.1137/080714579.  Google Scholar

[21]

M. Remoissenet, Waves Called Solitons. Concepts and Experiments, Advanced Texts in Physics, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-03790-4.  Google Scholar

[22]

W. H. Renninger and P. T. Rakich, Closed-form solutions and scaling laws for Kerr frequency combs, Scientific Reports, 6 (2016). doi: 10.1038/srep24742.  Google Scholar

[23]

K. Sakkaravarthi and T. Kanna, Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities, J. Math. Phys., 54 (2013), 14pp. doi: 10.1063/1.4772611.  Google Scholar

[24]

A. Scott, Encyclopedia of Nonlinear Science, Routledge, New York, 2005. doi: 10.4324/9780203647417.  Google Scholar

[25]

V. A. Vladimirov, E. V. Kutafina and A. Pudelko, Constructing soliton and kink solutions of PDE models in transport and biology, Symmetry Integrability Geom. Methods Appl., 2 (2006), 15pp. doi: 10.3842/SIGMA.2006.061.  Google Scholar

[26]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

[27]

G.-A. Zakeri and E. Yomba, Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations, J. Phys. Soc. Jpn., 82 (2013). doi: 10.7566/JPSJ.82.084002.  Google Scholar

[28]

S. Zdravković and G. Gligorić, Kinks and bell-type solitons in microtubules, Chaos, 35 (2016), 7pp. doi: 10.1063/1.4953011.  Google Scholar

Figure 1.  Kink solutions $ \widehat{x}, \widehat{y}$ to (112) with $ \widehat{c} = 1$. The black line denotes $ \widehat{x}\left(t\right)$; the gray line denotes $ \widehat{y}\left(t\right)$. In (a), $u = 10, v = -4$; in (b), $u = -2, v = 0$
Figure 2.  Kink solutions $x, y$ to (112) with $c = 0$. The black line denotes $x\left(\tau\right)$; the gray line denotes $y\left(\tau\right)$. In (a), $u = 10, v = -4$; in (b), $u = -2, v = 0$
Figure 3.  Phase plot of (112). Black lines denote kink solution trajectories. The gray circle denotes the unstable node (110). The gray dashed line denotes the equilibrium line (111). Gray arrows denote the direction field. The dotted line illustrates that perturbations in infected cell population $y$ lead to proportional changes in uninfected cell population $x$. As the solution evolves from point $A$ to $B$, $y$ increases by $0.46$, while $x$ decreases by $1.09$
Figure 4.  Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (126) and (127) hold true. The step size $h$ is $10^{-4}$; error is estimated over $N = 100$ steps. Errors higher than 10 are truncated to 10 for clarity. Note that the error is almost zero on the curve defined by (125)
Figure 5.  Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (125) and (127) hold true. The step size $h$ is $10^{-3}$; error is estimated over $N = 30$ steps. Errors higher than 2 are truncated to 2 for clarity. Note that the error is almost zero on the line defined by (126)
Figure 6.  Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (125), (126) hold true. The step size $h$ is $10^{-3}$; error is estimated over $N = 30$ steps. Errors higher than 100 are truncated to 100 for clarity. Note that the error is almost zero on the hyperbola defined by (127)
Figure 7.  Kink solutions to (132) with $ \widehat{c} = 1$. The black line denotes $ \widehat{x}\left(t\right)$; the gray line denotes $ \widehat{y}\left(t\right)$. In (a), $u = 4, v = 1$; in (b), $u = -5, v = 2$
Figure 8.  Kink solutions to (131) with $c = 0$. The black line denotes $x\left(\tau\right)$; the gray line denotes $y\left(\tau\right)$. In (a), $u = 4, v = 1$; in (b), $u = -5, v = 2$
Figure 9.  Phase plot of (131). Black lines denote kink solution trajectories. The gray diamond denotes the saddle point (129). The gray dashed line denotes the equilibrium line (130). Gray arrows denote direction field. The dotted line illustrates that large perturbations in infected cell population $y$ lead to small changes in uninfected cell population $x$. As the solution evolves from point $A$ to $B$, $y$ decreases by $5.19$, while $x$ increases by $0.39$
[1]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[2]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[3]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[4]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[7]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[8]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[9]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[10]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[11]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[12]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[15]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[16]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[17]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[18]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[19]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[20]

Aisling McGlinchey, Oliver Mason. Observations on the bias of nonnegative mechanisms for differential privacy. Foundations of Data Science, 2020, 2 (4) : 429-442. doi: 10.3934/fods.2020020

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (95)
  • HTML views (249)
  • Cited by (0)

[Back to Top]