doi: 10.3934/dcdsb.2020106

Kink solitary solutions to a hepatitis C evolution model

1. 

Research Group for Mathematical, and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania

2. 

Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain

3. 

Department of Applied Informatics, Kaunas University of Technology, Studentu 50-407, Kaunas LT-51368, Lithuania

4. 

Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA

5. 

Department of Software Engineering, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania

* Corresponding author: Tadas Telksnys (tadas.telksnys@ktu.lt)

Received  July 2017 Published  March 2020

The standard nonlinear hepatitis C evolution model described in (Reluga et al. 2009) is considered in this paper. The generalized differential operator technique is used to construct analytical kink solitary solutions to the governing equations coupled with multiplicative and diffusive terms. Conditions for the existence of kink solitary solutions are derived. It appears that kink solitary solutions are either in a linear or in a hyperbolic relationship. Thus, a large perturbation in the population of hepatitis infected cells does not necessarily lead to a large change in uninfected cells. Computational experiments are used to illustrate the evolution of transient solitary solutions in the hepatitis C model.

Citation: Tadas Telksnys, Zenonas Navickas, Miguel A. F. Sanjuán, Romas Marcinkevicius, Minvydas Ragulskis. Kink solitary solutions to a hepatitis C evolution model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020106
References:
[1]

N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, 751, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-78217-9.  Google Scholar

[2]

E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Dark-bright solitons in coupled nonlinear Schrödinger equations with unequal dispersion coefficients, Phys. Rev. E, 91 (2015). doi: 10.1103/PhysRevE.91.012924.  Google Scholar

[3] F. CourchampL. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008.   Google Scholar
[4] T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2010.   Google Scholar
[5]

W. Feng, J. Q. Li and Y. Kishimoto, Theory on bright and dark soliton formation in strongly magnetized plasmas, Physics Plasmas, 23 (2016). doi: 10.1063/1.4962846.  Google Scholar

[6]

F. Genoud, Extrema of the dynamic pressure in a solitary wave, Nonlinear Anal., 155 (2017), 65-71.  doi: 10.1016/j.na.2017.01.009.  Google Scholar

[7]

A. M. GrundlandM. Kovalyov and M. Sussman, Interaction of kink-type solutions of the harmonic map equations, J. Math. Phys., 35 (1994), 6774-6783.  doi: 10.1063/1.530642.  Google Scholar

[8]

Y.-H. Hu and S.-Y. Lou, Analytical descriptions of dark and gray solitons in nonlocal nonlinear media, Commun. Theor. Phys. (Beijing), 64 (2015), 665-670.  doi: 10.1088/0253-6102/64/6/665.  Google Scholar

[9]

A. KelkarE. Yomba and R. Djeloulli, Solitary wave solutions and modulational instability in a system of coupled complex Newell-Segel-Whitehead equations, Commun. Nonlinear Sci. Numer. Simul., 41 (2016), 118-139.  doi: 10.1016/j.cnsns.2016.04.034.  Google Scholar

[10]

J. D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Ltd., Chichester, 1991.  Google Scholar

[11]

A. G. LópezJ. M. Seoane and M. A. F. Sanjuán, A validated mathematical model of tumor growth including tumor-host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., 76 (2014), 2884-2906.  doi: 10.1007/s11538-014-0037-5.  Google Scholar

[12]

H. McCallumN. Barlow and J. Hone, How should pathogen transmission be modelled?, Trends Ecol. Evol., 16 (2001), 295-300.  doi: 10.1016/S0169-5347(01)02144-9.  Google Scholar

[13]

Z. Navickas and L. Bikulciene, Expressions of solutions of ordinary differential equations by standard functions, Math. Model. Anal., 11 (2006), 399-412.  doi: 10.3846/13926292.2006.9637327.  Google Scholar

[14]

Z. NavickasR. MarcinkeviciusT. Telksnys and M. Ragulskis, Existence of second order solitary solutions to Riccati differential equations coupled with a multiplicative term, IMA. J. Appl. Math., 81 (2016), 1163-1190.  doi: 10.1093/imamat/hxw050.  Google Scholar

[15]

Z. NavickasM. Ragulskis and T. Telksnys, Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity, Appl. Math. Comput., 283 (2016), 333-338.  doi: 10.1016/j.amc.2016.02.049.  Google Scholar

[16]

Z. NavickasR. VilkasT. Telksnys and M. Ragulskis, Direct and inverse relationships between Riccati systems coupled with multiplicative terms, J. Biol. Dyn., 10 (2016), 297-313.  doi: 10.1080/17513758.2016.1181801.  Google Scholar

[17]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2003.  Google Scholar

[18]

Z. Qiao and J. Li, Negative-order KdV equation with both solitons and kink wave solutions, Europhys. Lett., 94 (2011), 50003. doi: 10.1209/0295-5075/94/50003.  Google Scholar

[19] W. T. Reid, Riccati Differential Equations, Mathematics in Science and Engineering, 86, Academic Press, New York-London, 1972.   Google Scholar
[20]

T. C. RelugaH. Dahari and A. S. Perelson, Analysis of hepatitis C virus infection models with hepatocyte homeostasis, SIAM J. Appl. Math., 69 (2009), 999-1023.  doi: 10.1137/080714579.  Google Scholar

[21]

M. Remoissenet, Waves Called Solitons. Concepts and Experiments, Advanced Texts in Physics, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-03790-4.  Google Scholar

[22]

W. H. Renninger and P. T. Rakich, Closed-form solutions and scaling laws for Kerr frequency combs, Scientific Reports, 6 (2016). doi: 10.1038/srep24742.  Google Scholar

[23]

K. Sakkaravarthi and T. Kanna, Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities, J. Math. Phys., 54 (2013), 14pp. doi: 10.1063/1.4772611.  Google Scholar

[24]

A. Scott, Encyclopedia of Nonlinear Science, Routledge, New York, 2005. doi: 10.4324/9780203647417.  Google Scholar

[25]

V. A. Vladimirov, E. V. Kutafina and A. Pudelko, Constructing soliton and kink solutions of PDE models in transport and biology, Symmetry Integrability Geom. Methods Appl., 2 (2006), 15pp. doi: 10.3842/SIGMA.2006.061.  Google Scholar

[26]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

[27]

G.-A. Zakeri and E. Yomba, Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations, J. Phys. Soc. Jpn., 82 (2013). doi: 10.7566/JPSJ.82.084002.  Google Scholar

[28]

S. Zdravković and G. Gligorić, Kinks and bell-type solitons in microtubules, Chaos, 35 (2016), 7pp. doi: 10.1063/1.4953011.  Google Scholar

show all references

References:
[1]

N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, 751, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-78217-9.  Google Scholar

[2]

E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Dark-bright solitons in coupled nonlinear Schrödinger equations with unequal dispersion coefficients, Phys. Rev. E, 91 (2015). doi: 10.1103/PhysRevE.91.012924.  Google Scholar

[3] F. CourchampL. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008.   Google Scholar
[4] T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2010.   Google Scholar
[5]

W. Feng, J. Q. Li and Y. Kishimoto, Theory on bright and dark soliton formation in strongly magnetized plasmas, Physics Plasmas, 23 (2016). doi: 10.1063/1.4962846.  Google Scholar

[6]

F. Genoud, Extrema of the dynamic pressure in a solitary wave, Nonlinear Anal., 155 (2017), 65-71.  doi: 10.1016/j.na.2017.01.009.  Google Scholar

[7]

A. M. GrundlandM. Kovalyov and M. Sussman, Interaction of kink-type solutions of the harmonic map equations, J. Math. Phys., 35 (1994), 6774-6783.  doi: 10.1063/1.530642.  Google Scholar

[8]

Y.-H. Hu and S.-Y. Lou, Analytical descriptions of dark and gray solitons in nonlocal nonlinear media, Commun. Theor. Phys. (Beijing), 64 (2015), 665-670.  doi: 10.1088/0253-6102/64/6/665.  Google Scholar

[9]

A. KelkarE. Yomba and R. Djeloulli, Solitary wave solutions and modulational instability in a system of coupled complex Newell-Segel-Whitehead equations, Commun. Nonlinear Sci. Numer. Simul., 41 (2016), 118-139.  doi: 10.1016/j.cnsns.2016.04.034.  Google Scholar

[10]

J. D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Ltd., Chichester, 1991.  Google Scholar

[11]

A. G. LópezJ. M. Seoane and M. A. F. Sanjuán, A validated mathematical model of tumor growth including tumor-host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., 76 (2014), 2884-2906.  doi: 10.1007/s11538-014-0037-5.  Google Scholar

[12]

H. McCallumN. Barlow and J. Hone, How should pathogen transmission be modelled?, Trends Ecol. Evol., 16 (2001), 295-300.  doi: 10.1016/S0169-5347(01)02144-9.  Google Scholar

[13]

Z. Navickas and L. Bikulciene, Expressions of solutions of ordinary differential equations by standard functions, Math. Model. Anal., 11 (2006), 399-412.  doi: 10.3846/13926292.2006.9637327.  Google Scholar

[14]

Z. NavickasR. MarcinkeviciusT. Telksnys and M. Ragulskis, Existence of second order solitary solutions to Riccati differential equations coupled with a multiplicative term, IMA. J. Appl. Math., 81 (2016), 1163-1190.  doi: 10.1093/imamat/hxw050.  Google Scholar

[15]

Z. NavickasM. Ragulskis and T. Telksnys, Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity, Appl. Math. Comput., 283 (2016), 333-338.  doi: 10.1016/j.amc.2016.02.049.  Google Scholar

[16]

Z. NavickasR. VilkasT. Telksnys and M. Ragulskis, Direct and inverse relationships between Riccati systems coupled with multiplicative terms, J. Biol. Dyn., 10 (2016), 297-313.  doi: 10.1080/17513758.2016.1181801.  Google Scholar

[17]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2003.  Google Scholar

[18]

Z. Qiao and J. Li, Negative-order KdV equation with both solitons and kink wave solutions, Europhys. Lett., 94 (2011), 50003. doi: 10.1209/0295-5075/94/50003.  Google Scholar

[19] W. T. Reid, Riccati Differential Equations, Mathematics in Science and Engineering, 86, Academic Press, New York-London, 1972.   Google Scholar
[20]

T. C. RelugaH. Dahari and A. S. Perelson, Analysis of hepatitis C virus infection models with hepatocyte homeostasis, SIAM J. Appl. Math., 69 (2009), 999-1023.  doi: 10.1137/080714579.  Google Scholar

[21]

M. Remoissenet, Waves Called Solitons. Concepts and Experiments, Advanced Texts in Physics, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-03790-4.  Google Scholar

[22]

W. H. Renninger and P. T. Rakich, Closed-form solutions and scaling laws for Kerr frequency combs, Scientific Reports, 6 (2016). doi: 10.1038/srep24742.  Google Scholar

[23]

K. Sakkaravarthi and T. Kanna, Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities, J. Math. Phys., 54 (2013), 14pp. doi: 10.1063/1.4772611.  Google Scholar

[24]

A. Scott, Encyclopedia of Nonlinear Science, Routledge, New York, 2005. doi: 10.4324/9780203647417.  Google Scholar

[25]

V. A. Vladimirov, E. V. Kutafina and A. Pudelko, Constructing soliton and kink solutions of PDE models in transport and biology, Symmetry Integrability Geom. Methods Appl., 2 (2006), 15pp. doi: 10.3842/SIGMA.2006.061.  Google Scholar

[26]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

[27]

G.-A. Zakeri and E. Yomba, Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations, J. Phys. Soc. Jpn., 82 (2013). doi: 10.7566/JPSJ.82.084002.  Google Scholar

[28]

S. Zdravković and G. Gligorić, Kinks and bell-type solitons in microtubules, Chaos, 35 (2016), 7pp. doi: 10.1063/1.4953011.  Google Scholar

Figure 1.  Kink solutions $ \widehat{x}, \widehat{y}$ to (112) with $ \widehat{c} = 1$. The black line denotes $ \widehat{x}\left(t\right)$; the gray line denotes $ \widehat{y}\left(t\right)$. In (a), $u = 10, v = -4$; in (b), $u = -2, v = 0$
Figure 2.  Kink solutions $x, y$ to (112) with $c = 0$. The black line denotes $x\left(\tau\right)$; the gray line denotes $y\left(\tau\right)$. In (a), $u = 10, v = -4$; in (b), $u = -2, v = 0$
Figure 3.  Phase plot of (112). Black lines denote kink solution trajectories. The gray circle denotes the unstable node (110). The gray dashed line denotes the equilibrium line (111). Gray arrows denote the direction field. The dotted line illustrates that perturbations in infected cell population $y$ lead to proportional changes in uninfected cell population $x$. As the solution evolves from point $A$ to $B$, $y$ increases by $0.46$, while $x$ decreases by $1.09$
Figure 4.  Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (126) and (127) hold true. The step size $h$ is $10^{-4}$; error is estimated over $N = 100$ steps. Errors higher than 10 are truncated to 10 for clarity. Note that the error is almost zero on the curve defined by (125)
Figure 5.  Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (125) and (127) hold true. The step size $h$ is $10^{-3}$; error is estimated over $N = 30$ steps. Errors higher than 2 are truncated to 2 for clarity. Note that the error is almost zero on the line defined by (126)
Figure 6.  Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (125), (126) hold true. The step size $h$ is $10^{-3}$; error is estimated over $N = 30$ steps. Errors higher than 100 are truncated to 100 for clarity. Note that the error is almost zero on the hyperbola defined by (127)
Figure 7.  Kink solutions to (132) with $ \widehat{c} = 1$. The black line denotes $ \widehat{x}\left(t\right)$; the gray line denotes $ \widehat{y}\left(t\right)$. In (a), $u = 4, v = 1$; in (b), $u = -5, v = 2$
Figure 8.  Kink solutions to (131) with $c = 0$. The black line denotes $x\left(\tau\right)$; the gray line denotes $y\left(\tau\right)$. In (a), $u = 4, v = 1$; in (b), $u = -5, v = 2$
Figure 9.  Phase plot of (131). Black lines denote kink solution trajectories. The gray diamond denotes the saddle point (129). The gray dashed line denotes the equilibrium line (130). Gray arrows denote direction field. The dotted line illustrates that large perturbations in infected cell population $y$ lead to small changes in uninfected cell population $x$. As the solution evolves from point $A$ to $B$, $y$ decreases by $5.19$, while $x$ increases by $0.39$
[1]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020392

[2]

Elamin H. Elbasha. Model for hepatitis C virus transmissions. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1045-1065. doi: 10.3934/mbe.2013.10.1045

[3]

Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067

[4]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[5]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[6]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[7]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[8]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[9]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[10]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[11]

John A. D. Appleby, John A. Daniels. Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles. Conference Publications, 2011, 2011 (Special) : 91-101. doi: 10.3934/proc.2011.2011.91

[12]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[13]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[14]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[15]

Md. Abul Kalam Azad, Edite M.G.P. Fernandes. A modified differential evolution based solution technique for economic dispatch problems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1017-1038. doi: 10.3934/jimo.2012.8.1017

[16]

Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95

[17]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[18]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[19]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[20]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (37)
  • HTML views (161)
  • Cited by (0)

[Back to Top]