November  2020, 25(11): 4479-4492. doi: 10.3934/dcdsb.2020108

Spreading speeds for a class of non-local convolution differential equation

1. 

Department of Mathematics, Jinan University, Guangzhou 510632, China

2. 

School of Mathematics and Big Data, Foshan University, Foshan 528000, China

* Corresponding author: chufenwu@126.com

Received  January 2019 Revised  November 2019 Published  March 2020

Fund Project: The first author is supported by NSF of China grant No. 11701216, NSF of Guangdong Province grant No. 2017A030313015 and the Fundamental Research Funds for the Central Universities. The second author is supported by NSF of Guangdong Province grant No. 2019A1515011648 and NSF of China grant No. 11401096

The spatial spreading dynamics is considered for a class of convolution differential equation resulting from physical and biological problems. It is shown that this kind of equation with monostable structure admits a spreading speed, even when the nonlinear reaction terms without monotonicity. The upward convergence of spreading speed is also established under appropriate conditions.

Citation: Zhaoquan Xu, Chufen Wu. Spreading speeds for a class of non-local convolution differential equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4479-4492. doi: 10.3934/dcdsb.2020108
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, 446, Springer, Berlin, 1975, 5–49. doi: 10.1007/BFb0070595.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population dynamics, Adv. in Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[4]

X. F. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[5]

Z. X. ChenB. Ermentrout and B. Mcleod, Traveling fronts for a class of non-local convolution differential quations, Appl. Anal., 64 (1997), 235-253.  doi: 10.1080/00036819708840533.  Google Scholar

[6]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Differential Equations, 33 (1979), 58-73.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[7]

O. Diekmann, Thresholds and travelling waves for the geographical spread of an infection, J. Math. Biol., 6 (1978), 109-130.  doi: 10.1007/BF02450783.  Google Scholar

[8]

O. Diekmann and H. G. Kapper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), 721-737.  doi: 10.1016/0362-546X(78)90015-9.  Google Scholar

[9]

W. Ding and X. Liang, Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media, SIAM J. Math. Anal., 47 (2015), 855-896.  doi: 10.1137/140958141.  Google Scholar

[10]

B. Ermentrout and J. McLeod, Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 461-478.  doi: 10.1017/S030821050002583X.  Google Scholar

[11]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010), 2199-2226.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[12]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation, Nonlinearity, 24 (2011), 3043-3054.  doi: 10.1088/0951-7715/24/11/002.  Google Scholar

[13]

C. GomezH. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 420 (2014), 1-19.  doi: 10.1016/j.jmaa.2014.05.064.  Google Scholar

[14]

S. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[15]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[16]

Y. Jin and X.-Q. Zhao, Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22 (2009), 1167-1189.  doi: 10.1088/0951-7715/22/5/011.  Google Scholar

[17]

B. T. LiM. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[18]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[19]

G. LinW. T. Li and S. G. Ruan, Spreading speeds and traveling waves in competitive recursion systems, J. Math. Biol., 62 (2011), 165-201.  doi: 10.1007/s00285-010-0334-z.  Google Scholar

[20]

A. De MasiT. Gobron and E. Presutti, Travelling fronts in a non-local evolution equation, Arch. Rational Mech. Anal., 132 (1995), 143-205.  doi: 10.1007/BF00380506.  Google Scholar

[21]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222.  doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[22]

K. Schumacher, Travelling-front solutions for integro-differential equations. Ⅱ, in Biological Growth and Spread, Lecture Notes in Biomath., 38, Springer, Berlin-New York, 1980,296–309. doi: 10.1007/978-3-642-61850-5_28.  Google Scholar

[23]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), 94-121.  doi: 10.1515/crll.1979.306.94.  Google Scholar

[24]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187.  doi: 10.1007/BF00279720.  Google Scholar

[25]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[26]

H. F. WeinbergerK. Kawasaki and N. Shigesada, Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions, J. Math. Biol., 57 (2008), 387-411.  doi: 10.1007/s00285-008-0168-0.  Google Scholar

[27]

S. L. WuW. T. Li and S. Y. Liu, Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability, Nonlinear Anal. Real World Appl., 10 (2009), 3141-3151.  doi: 10.1016/j.nonrwa.2008.10.012.  Google Scholar

[28]

C. Wu, D. Xiao and X.-Q. Zhao, Asymptotic pattern of a migratory and nonmonotone population model, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1171-1195. doi: 10.3934/dcdsb.2014.19.1171.  Google Scholar

[29]

C. WuY. Wang and X. Zou, Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment, J. Differential Equations, 267 (2019), 4890-4921.  doi: 10.1016/j.jde.2019.05.019.  Google Scholar

[30]

Z. Xu, Asymptotic speeds of spread for a nonlocal diffusion equation, J. Dynam. Differential Equations, 30 (2018), 473-499.  doi: 10.1007/s10884-016-9555-1.  Google Scholar

[31]

Z. Xu and D. Xiao, Regular traveling waves for a nonlocal diffusion equation, J. Differential Equations, 258 (2015), 191-223.  doi: 10.1016/j.jde.2014.09.008.  Google Scholar

[32]

Z. Xu and C. Wu, Monostable waves in a class of non-local convolution differential equation, J. Math. Anal. Appl., 462 (2018), 1205-1224.  doi: 10.1016/j.jmaa.2018.02.036.  Google Scholar

[33]

T. YiY. Chen and J. Wu, Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves, J. Differential Equations, 254 (2013), 3538-3572.  doi: 10.1016/j.jde.2013.01.031.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, 446, Springer, Berlin, 1975, 5–49. doi: 10.1007/BFb0070595.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population dynamics, Adv. in Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[4]

X. F. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[5]

Z. X. ChenB. Ermentrout and B. Mcleod, Traveling fronts for a class of non-local convolution differential quations, Appl. Anal., 64 (1997), 235-253.  doi: 10.1080/00036819708840533.  Google Scholar

[6]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Differential Equations, 33 (1979), 58-73.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[7]

O. Diekmann, Thresholds and travelling waves for the geographical spread of an infection, J. Math. Biol., 6 (1978), 109-130.  doi: 10.1007/BF02450783.  Google Scholar

[8]

O. Diekmann and H. G. Kapper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), 721-737.  doi: 10.1016/0362-546X(78)90015-9.  Google Scholar

[9]

W. Ding and X. Liang, Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media, SIAM J. Math. Anal., 47 (2015), 855-896.  doi: 10.1137/140958141.  Google Scholar

[10]

B. Ermentrout and J. McLeod, Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 461-478.  doi: 10.1017/S030821050002583X.  Google Scholar

[11]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010), 2199-2226.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[12]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation, Nonlinearity, 24 (2011), 3043-3054.  doi: 10.1088/0951-7715/24/11/002.  Google Scholar

[13]

C. GomezH. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 420 (2014), 1-19.  doi: 10.1016/j.jmaa.2014.05.064.  Google Scholar

[14]

S. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[15]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[16]

Y. Jin and X.-Q. Zhao, Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22 (2009), 1167-1189.  doi: 10.1088/0951-7715/22/5/011.  Google Scholar

[17]

B. T. LiM. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[18]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[19]

G. LinW. T. Li and S. G. Ruan, Spreading speeds and traveling waves in competitive recursion systems, J. Math. Biol., 62 (2011), 165-201.  doi: 10.1007/s00285-010-0334-z.  Google Scholar

[20]

A. De MasiT. Gobron and E. Presutti, Travelling fronts in a non-local evolution equation, Arch. Rational Mech. Anal., 132 (1995), 143-205.  doi: 10.1007/BF00380506.  Google Scholar

[21]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222.  doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[22]

K. Schumacher, Travelling-front solutions for integro-differential equations. Ⅱ, in Biological Growth and Spread, Lecture Notes in Biomath., 38, Springer, Berlin-New York, 1980,296–309. doi: 10.1007/978-3-642-61850-5_28.  Google Scholar

[23]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), 94-121.  doi: 10.1515/crll.1979.306.94.  Google Scholar

[24]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187.  doi: 10.1007/BF00279720.  Google Scholar

[25]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[26]

H. F. WeinbergerK. Kawasaki and N. Shigesada, Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions, J. Math. Biol., 57 (2008), 387-411.  doi: 10.1007/s00285-008-0168-0.  Google Scholar

[27]

S. L. WuW. T. Li and S. Y. Liu, Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability, Nonlinear Anal. Real World Appl., 10 (2009), 3141-3151.  doi: 10.1016/j.nonrwa.2008.10.012.  Google Scholar

[28]

C. Wu, D. Xiao and X.-Q. Zhao, Asymptotic pattern of a migratory and nonmonotone population model, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1171-1195. doi: 10.3934/dcdsb.2014.19.1171.  Google Scholar

[29]

C. WuY. Wang and X. Zou, Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment, J. Differential Equations, 267 (2019), 4890-4921.  doi: 10.1016/j.jde.2019.05.019.  Google Scholar

[30]

Z. Xu, Asymptotic speeds of spread for a nonlocal diffusion equation, J. Dynam. Differential Equations, 30 (2018), 473-499.  doi: 10.1007/s10884-016-9555-1.  Google Scholar

[31]

Z. Xu and D. Xiao, Regular traveling waves for a nonlocal diffusion equation, J. Differential Equations, 258 (2015), 191-223.  doi: 10.1016/j.jde.2014.09.008.  Google Scholar

[32]

Z. Xu and C. Wu, Monostable waves in a class of non-local convolution differential equation, J. Math. Anal. Appl., 462 (2018), 1205-1224.  doi: 10.1016/j.jmaa.2018.02.036.  Google Scholar

[33]

T. YiY. Chen and J. Wu, Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves, J. Differential Equations, 254 (2013), 3538-3572.  doi: 10.1016/j.jde.2013.01.031.  Google Scholar

[1]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[2]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[3]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[4]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[5]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[6]

Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050

[7]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[8]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[9]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[10]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[11]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[12]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[13]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[14]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[15]

Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152

[16]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[17]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[18]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[19]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[20]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (99)
  • HTML views (218)
  • Cited by (0)

Other articles
by authors

[Back to Top]