• Previous Article
    Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment
  • DCDS-B Home
  • This Issue
  • Next Article
    Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core
doi: 10.3934/dcdsb.2020108

Spreading speeds for a class of non-local convolution differential equation

1. 

Department of Mathematics, Jinan University, Guangzhou 510632, China

2. 

School of Mathematics and Big Data, Foshan University, Foshan 528000, China

* Corresponding author: chufenwu@126.com

Received  January 2019 Revised  November 2019 Published  March 2020

Fund Project: The first author is supported by NSF of China grant No. 11701216, NSF of Guangdong Province grant No. 2017A030313015 and the Fundamental Research Funds for the Central Universities. The second author is supported by NSF of Guangdong Province grant No. 2019A1515011648 and NSF of China grant No. 11401096

The spatial spreading dynamics is considered for a class of convolution differential equation resulting from physical and biological problems. It is shown that this kind of equation with monostable structure admits a spreading speed, even when the nonlinear reaction terms without monotonicity. The upward convergence of spreading speed is also established under appropriate conditions.

Citation: Zhaoquan Xu, Chufen Wu. Spreading speeds for a class of non-local convolution differential equation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020108
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, 446, Springer, Berlin, 1975, 5–49. doi: 10.1007/BFb0070595.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population dynamics, Adv. in Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[4]

X. F. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[5]

Z. X. ChenB. Ermentrout and B. Mcleod, Traveling fronts for a class of non-local convolution differential quations, Appl. Anal., 64 (1997), 235-253.  doi: 10.1080/00036819708840533.  Google Scholar

[6]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Differential Equations, 33 (1979), 58-73.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[7]

O. Diekmann, Thresholds and travelling waves for the geographical spread of an infection, J. Math. Biol., 6 (1978), 109-130.  doi: 10.1007/BF02450783.  Google Scholar

[8]

O. Diekmann and H. G. Kapper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), 721-737.  doi: 10.1016/0362-546X(78)90015-9.  Google Scholar

[9]

W. Ding and X. Liang, Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media, SIAM J. Math. Anal., 47 (2015), 855-896.  doi: 10.1137/140958141.  Google Scholar

[10]

B. Ermentrout and J. McLeod, Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 461-478.  doi: 10.1017/S030821050002583X.  Google Scholar

[11]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010), 2199-2226.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[12]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation, Nonlinearity, 24 (2011), 3043-3054.  doi: 10.1088/0951-7715/24/11/002.  Google Scholar

[13]

C. GomezH. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 420 (2014), 1-19.  doi: 10.1016/j.jmaa.2014.05.064.  Google Scholar

[14]

S. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[15]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[16]

Y. Jin and X.-Q. Zhao, Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22 (2009), 1167-1189.  doi: 10.1088/0951-7715/22/5/011.  Google Scholar

[17]

B. T. LiM. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[18]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[19]

G. LinW. T. Li and S. G. Ruan, Spreading speeds and traveling waves in competitive recursion systems, J. Math. Biol., 62 (2011), 165-201.  doi: 10.1007/s00285-010-0334-z.  Google Scholar

[20]

A. De MasiT. Gobron and E. Presutti, Travelling fronts in a non-local evolution equation, Arch. Rational Mech. Anal., 132 (1995), 143-205.  doi: 10.1007/BF00380506.  Google Scholar

[21]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222.  doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[22]

K. Schumacher, Travelling-front solutions for integro-differential equations. Ⅱ, in Biological Growth and Spread, Lecture Notes in Biomath., 38, Springer, Berlin-New York, 1980,296–309. doi: 10.1007/978-3-642-61850-5_28.  Google Scholar

[23]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), 94-121.  doi: 10.1515/crll.1979.306.94.  Google Scholar

[24]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187.  doi: 10.1007/BF00279720.  Google Scholar

[25]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[26]

H. F. WeinbergerK. Kawasaki and N. Shigesada, Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions, J. Math. Biol., 57 (2008), 387-411.  doi: 10.1007/s00285-008-0168-0.  Google Scholar

[27]

S. L. WuW. T. Li and S. Y. Liu, Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability, Nonlinear Anal. Real World Appl., 10 (2009), 3141-3151.  doi: 10.1016/j.nonrwa.2008.10.012.  Google Scholar

[28]

C. Wu, D. Xiao and X.-Q. Zhao, Asymptotic pattern of a migratory and nonmonotone population model, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1171-1195. doi: 10.3934/dcdsb.2014.19.1171.  Google Scholar

[29]

C. WuY. Wang and X. Zou, Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment, J. Differential Equations, 267 (2019), 4890-4921.  doi: 10.1016/j.jde.2019.05.019.  Google Scholar

[30]

Z. Xu, Asymptotic speeds of spread for a nonlocal diffusion equation, J. Dynam. Differential Equations, 30 (2018), 473-499.  doi: 10.1007/s10884-016-9555-1.  Google Scholar

[31]

Z. Xu and D. Xiao, Regular traveling waves for a nonlocal diffusion equation, J. Differential Equations, 258 (2015), 191-223.  doi: 10.1016/j.jde.2014.09.008.  Google Scholar

[32]

Z. Xu and C. Wu, Monostable waves in a class of non-local convolution differential equation, J. Math. Anal. Appl., 462 (2018), 1205-1224.  doi: 10.1016/j.jmaa.2018.02.036.  Google Scholar

[33]

T. YiY. Chen and J. Wu, Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves, J. Differential Equations, 254 (2013), 3538-3572.  doi: 10.1016/j.jde.2013.01.031.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, 446, Springer, Berlin, 1975, 5–49. doi: 10.1007/BFb0070595.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population dynamics, Adv. in Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[4]

X. F. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[5]

Z. X. ChenB. Ermentrout and B. Mcleod, Traveling fronts for a class of non-local convolution differential quations, Appl. Anal., 64 (1997), 235-253.  doi: 10.1080/00036819708840533.  Google Scholar

[6]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Differential Equations, 33 (1979), 58-73.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[7]

O. Diekmann, Thresholds and travelling waves for the geographical spread of an infection, J. Math. Biol., 6 (1978), 109-130.  doi: 10.1007/BF02450783.  Google Scholar

[8]

O. Diekmann and H. G. Kapper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), 721-737.  doi: 10.1016/0362-546X(78)90015-9.  Google Scholar

[9]

W. Ding and X. Liang, Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media, SIAM J. Math. Anal., 47 (2015), 855-896.  doi: 10.1137/140958141.  Google Scholar

[10]

B. Ermentrout and J. McLeod, Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 461-478.  doi: 10.1017/S030821050002583X.  Google Scholar

[11]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010), 2199-2226.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[12]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation, Nonlinearity, 24 (2011), 3043-3054.  doi: 10.1088/0951-7715/24/11/002.  Google Scholar

[13]

C. GomezH. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 420 (2014), 1-19.  doi: 10.1016/j.jmaa.2014.05.064.  Google Scholar

[14]

S. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[15]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[16]

Y. Jin and X.-Q. Zhao, Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22 (2009), 1167-1189.  doi: 10.1088/0951-7715/22/5/011.  Google Scholar

[17]

B. T. LiM. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[18]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[19]

G. LinW. T. Li and S. G. Ruan, Spreading speeds and traveling waves in competitive recursion systems, J. Math. Biol., 62 (2011), 165-201.  doi: 10.1007/s00285-010-0334-z.  Google Scholar

[20]

A. De MasiT. Gobron and E. Presutti, Travelling fronts in a non-local evolution equation, Arch. Rational Mech. Anal., 132 (1995), 143-205.  doi: 10.1007/BF00380506.  Google Scholar

[21]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222.  doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[22]

K. Schumacher, Travelling-front solutions for integro-differential equations. Ⅱ, in Biological Growth and Spread, Lecture Notes in Biomath., 38, Springer, Berlin-New York, 1980,296–309. doi: 10.1007/978-3-642-61850-5_28.  Google Scholar

[23]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), 94-121.  doi: 10.1515/crll.1979.306.94.  Google Scholar

[24]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187.  doi: 10.1007/BF00279720.  Google Scholar

[25]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[26]

H. F. WeinbergerK. Kawasaki and N. Shigesada, Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions, J. Math. Biol., 57 (2008), 387-411.  doi: 10.1007/s00285-008-0168-0.  Google Scholar

[27]

S. L. WuW. T. Li and S. Y. Liu, Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability, Nonlinear Anal. Real World Appl., 10 (2009), 3141-3151.  doi: 10.1016/j.nonrwa.2008.10.012.  Google Scholar

[28]

C. Wu, D. Xiao and X.-Q. Zhao, Asymptotic pattern of a migratory and nonmonotone population model, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1171-1195. doi: 10.3934/dcdsb.2014.19.1171.  Google Scholar

[29]

C. WuY. Wang and X. Zou, Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment, J. Differential Equations, 267 (2019), 4890-4921.  doi: 10.1016/j.jde.2019.05.019.  Google Scholar

[30]

Z. Xu, Asymptotic speeds of spread for a nonlocal diffusion equation, J. Dynam. Differential Equations, 30 (2018), 473-499.  doi: 10.1007/s10884-016-9555-1.  Google Scholar

[31]

Z. Xu and D. Xiao, Regular traveling waves for a nonlocal diffusion equation, J. Differential Equations, 258 (2015), 191-223.  doi: 10.1016/j.jde.2014.09.008.  Google Scholar

[32]

Z. Xu and C. Wu, Monostable waves in a class of non-local convolution differential equation, J. Math. Anal. Appl., 462 (2018), 1205-1224.  doi: 10.1016/j.jmaa.2018.02.036.  Google Scholar

[33]

T. YiY. Chen and J. Wu, Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves, J. Differential Equations, 254 (2013), 3538-3572.  doi: 10.1016/j.jde.2013.01.031.  Google Scholar

[1]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[2]

Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649

[3]

José Caicedo, Alfonso Castro, Rodrigo Duque, Arturo Sanjuán. Existence of $L^p$-solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1193-1202. doi: 10.3934/dcdss.2014.7.1193

[4]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[5]

Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35

[6]

Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919

[7]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[8]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[9]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[10]

Pablo Amster, Manuel Zamora. Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4819-4835. doi: 10.3934/dcds.2018211

[11]

Anatoli F. Ivanov, Bernhard Lani-Wayda. Periodic solutions for three-dimensional non-monotone cyclic systems with time delays. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 667-692. doi: 10.3934/dcds.2004.11.667

[12]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[13]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[14]

Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

[15]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[16]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[17]

Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213

[18]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199

[19]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

[20]

Peixuan Weng. Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 883-904. doi: 10.3934/dcdsb.2009.12.883

2019 Impact Factor: 1.27

Article outline

[Back to Top]