November  2020, 25(11): 4493-4513. doi: 10.3934/dcdsb.2020109

Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps

1. 

School of Mathematics, Southeast University, Nanjing 211189, China

2. 

Research Center for Complex Systems and Network Sciences, Southeast University, Nanjing 211189, China

* Corresponding author: Jinde Cao

Received  January 2019 Revised  November 2019 Published  March 2020

Fund Project: This work was jointly supported by the Key Project of National Science Foundation of China under Grant No. 61833005

The main aim of this article is to examine almost sure exponential stabilization and suppression of nonlinear systems by periodically intermittent stochastic perturbation with jumps. On the one hand, some sufficient criteria ensure almost sure stabilization of the unstable deterministic system by applying exponential martingale inequality with jumps. On the other hand, sufficient conditions of destabilization are provided under which the system is stable by the well-known strong law of large numbers of local martingale and Poisson process. Both the sample Lyapunov exponents are closely related to the control period $ T $ and noise width $ \theta $. As for applications, the well-known Lorenz chaotic systems and nonlinear Liénard equation with jumps are discussed. Finally, two simulation examples demonstrating the effectiveness of the results are provided.

Citation: Wensheng Yin, Jinde Cao. Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4493-4513. doi: 10.3934/dcdsb.2020109
References:
[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2009.  doi: 10.1017/CBO9780511755323.  Google Scholar
[2]

D. Applebaum, Extending stochastic resonance for neuron models to general Lévy noise, IEEE Trans. Neural Netw., 20 (2009), 1993-1995.  doi: 10.1109/TNN.2009.2033183.  Google Scholar

[3]

D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise, J. Appl. Probab., 46 (2009), 1116-1129.  doi: 10.1239/jap/1261670692.  Google Scholar

[4]

D. Applebaum and M. Siakalli, Stochastic stabilization of dynamical systems using Lévy noise, Stoch. Dyn., 10 (2010), 509-527.  doi: 10.1142/S0219493710003066.  Google Scholar

[5]

A. D. ApplebyX. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise, IEEE Tran. Automat. Control, 53 (2008), 683-691.  doi: 10.1109/TAC.2008.919255.  Google Scholar

[6]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. doi: 10.1201/9780203485217.  Google Scholar

[7]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica J. IFAC, 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[8]

Y. FengX. YangQ. Song and J. Cao, Synchronization of memristive neural networks with mixed delays via quantized intermittent control, Appl. Math. Comput., 339 (2018), 874-887.  doi: 10.1016/j.amc.2018.08.009.  Google Scholar

[9]

R. Fernholz and I. Karatzas, Relative arbitrage in volatility-stabilized markets, Ann. Financ., 1 (2005), 149-177.  doi: 10.1007/s10436-004-0011-6.  Google Scholar

[10]

H. Gao and Y. Wang, Stochastic mutualism model under regime switching with Lévy jumps, Phys. A, 515 (2019), 355-375.  doi: 10.1016/j.physa.2018.09.189.  Google Scholar

[11]

B. GuoY. WuY. Xiao and C. Zhang, Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control, Appl. Math. Comput., 331 (2018), 341-357.  doi: 10.1016/j.amc.2018.03.020.  Google Scholar

[12]

R. Hasminskii, Stochastic Stability of Differential Equations, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980. doi: 10.1007/978-3-642-23280-0.  Google Scholar

[13]

N. Li and J. Cao, Intermittent control on switched networks via $\omega$-matrix measure method, Nonlinear Dynam., 77 (2014), 1363-1375.  doi: 10.1007/s11071-014-1385-2.  Google Scholar

[14]

S. Li, J. Cao and Y. He, Pinning controllability scheme of directed complex delayed dynamical networks via periodically intermittent control, Discrete Dyn. Nat. Soc., (2016), 10 pp. doi: 10.1155/2016/1585928.  Google Scholar

[15]

C. LiZ. Dong and R. Situ, Almost sure stability of linear stochastic differential equations with jumps, Probab. Theory Related Fields, 123 (2002), 121-155.  doi: 10.1007/s004400200198.  Google Scholar

[16]

L. LiuY. Shen and F. Jiang, The almost sure asymptotic stability and $p$th moment asymptotic stability of nonlinear stochastic differential systems with polynomial growth, IEEE Trans. Automat. Control, 56 (2011), 1985-1990.  doi: 10.1109/TAC.2011.2146970.  Google Scholar

[17]

L. Liu and Y. Shen, Noise suppresses explosive solutions of differential systems with coefficients satisfying the polynomial growth condition, Automatica J. IFAC, 48 (2012), 619-624.  doi: 10.1016/j.automatica.2012.01.022.  Google Scholar

[18]

X. Mao, Stochastic stabilization and destabilization, Systems Control Lett., 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7.  Google Scholar

[19]

X. MaoG. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica J. IFAC, 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[20]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Tran. Automat. Control, 61 (2016), 1619-1624.  doi: 10.1109/TAC.2015.2471696.  Google Scholar

[21]

L. Pan and J. Cao, Stochastic quasi-synchronization for delayed dynamical networks via intermittent control, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1332-1343.  doi: 10.1016/j.cnsns.2011.07.010.  Google Scholar

[22]

A. Patel and B. Kosko, Stochastic resonance in continuous and spiking neuron models with Lévy noise, IEEE Trans. Neural Netw., 19 (2008), 1993-2008.  doi: 10.1109/TNN.2008.2005610.  Google Scholar

[23]

M. Scheutzow, Stabilisation and destabilisation by noise in the plane, Stochastic Anal. Appl., 11 (1993), 97-113.  doi: 10.1080/07362999308809304.  Google Scholar

[24]

M. Siakalli, Stability Properties of Stochastic Differential Equations Driven by Lévy Noise, Ph.D thesis, University of Sheffield, 2009. Google Scholar

[25]

Y. Wan and J. Cao, Distributed robust stabilization of linear multi-agent systems with intermittent control, J. Franklin Inst., 352 (2015), 4515-4527.  doi: 10.1016/j.jfranklin.2015.06.024.  Google Scholar

[26]

P. WangY. Hong and H. Su, Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control, Nonlinear Anal. Hybrid Syst., 29 (2018), 395-413.  doi: 10.1016/j.nahs.2018.03.006.  Google Scholar

[27]

F. Wu and S. Hu, Suppression and stabilisation of noise, Internat. J. Control, 82 (2009), 2150-2157.  doi: 10.1080/00207170902968108.  Google Scholar

[28]

F. WuG. Yin and Z. Jin, Kolmogorov-type systems with regime-switching jump diffusion perturbations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2293-2319.  doi: 10.3934/dcdsb.2016048.  Google Scholar

[29]

Y. XuX. WangH. Zhang and W. Xu, Stochastic stability for nonlinear systems driven by Lévy noise, Nonlinear Dynam., 68 (2012), 7-15.  doi: 10.1007/s11071-011-0199-8.  Google Scholar

[30]

Y. Xu, H. Zhou and W. Li, Stabilization of stochastic delayed systems with Lévy noise on networks via periodically intermittent control, Internat. J. Control, (2018). doi: 10.1080/00207179.2018.1479538.  Google Scholar

[31]

G. YinY. Talafha and F. Xi, Stochastic Liénard equations with random switching and two-time scales, Comm. Statist. Theory Methods, 43 (2014), 1533-1547.  doi: 10.1080/03610926.2012.741741.  Google Scholar

[32]

Q. Zhu, Asymptotic stability in the $p$th moment for stochastic differential equations with Lévy noise, J. Math. Anal. Appl., 416 (2014), 126-142.  doi: 10.1016/j.jmaa.2014.02.016.  Google Scholar

[33]

Q. Zhu, Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching, Internat. J. Control, 90 (2017), 1703-1712.  doi: 10.1080/00207179.2016.1219069.  Google Scholar

[34]

Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Systems Control Lett., 118 (2018), 62-68.  doi: 10.1016/j.sysconle.2018.05.015.  Google Scholar

[35]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Franklin Inst., 355 (2018), 3829-3852.  doi: 10.1016/j.jfranklin.2017.12.033.  Google Scholar

[36]

S. ZhuK. SunS. Zhou and Y. Shi, Stochastic suppression and almost surely stabilization of non-autonomous hybrid system with a new general one-sided polynomial, J. Franklin Inst., 354 (2017), 6550-6566.  doi: 10.1016/j.jfranklin.2017.08.007.  Google Scholar

[37]

X. ZongT. Li and J. Zhang, Consensus conditions for continuous-time multi-agent systems with additive and multiplicative measurement noises, SIAM J. Control Optim., 56 (2018), 19-52.  doi: 10.1137/15M1019775.  Google Scholar

[38]

X. ZongF. WuG. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems, SIAM J. Control Optim., 52 (2014), 2595-2622.  doi: 10.1137/14095251X.  Google Scholar

show all references

References:
[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2009.  doi: 10.1017/CBO9780511755323.  Google Scholar
[2]

D. Applebaum, Extending stochastic resonance for neuron models to general Lévy noise, IEEE Trans. Neural Netw., 20 (2009), 1993-1995.  doi: 10.1109/TNN.2009.2033183.  Google Scholar

[3]

D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise, J. Appl. Probab., 46 (2009), 1116-1129.  doi: 10.1239/jap/1261670692.  Google Scholar

[4]

D. Applebaum and M. Siakalli, Stochastic stabilization of dynamical systems using Lévy noise, Stoch. Dyn., 10 (2010), 509-527.  doi: 10.1142/S0219493710003066.  Google Scholar

[5]

A. D. ApplebyX. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise, IEEE Tran. Automat. Control, 53 (2008), 683-691.  doi: 10.1109/TAC.2008.919255.  Google Scholar

[6]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. doi: 10.1201/9780203485217.  Google Scholar

[7]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica J. IFAC, 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[8]

Y. FengX. YangQ. Song and J. Cao, Synchronization of memristive neural networks with mixed delays via quantized intermittent control, Appl. Math. Comput., 339 (2018), 874-887.  doi: 10.1016/j.amc.2018.08.009.  Google Scholar

[9]

R. Fernholz and I. Karatzas, Relative arbitrage in volatility-stabilized markets, Ann. Financ., 1 (2005), 149-177.  doi: 10.1007/s10436-004-0011-6.  Google Scholar

[10]

H. Gao and Y. Wang, Stochastic mutualism model under regime switching with Lévy jumps, Phys. A, 515 (2019), 355-375.  doi: 10.1016/j.physa.2018.09.189.  Google Scholar

[11]

B. GuoY. WuY. Xiao and C. Zhang, Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control, Appl. Math. Comput., 331 (2018), 341-357.  doi: 10.1016/j.amc.2018.03.020.  Google Scholar

[12]

R. Hasminskii, Stochastic Stability of Differential Equations, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980. doi: 10.1007/978-3-642-23280-0.  Google Scholar

[13]

N. Li and J. Cao, Intermittent control on switched networks via $\omega$-matrix measure method, Nonlinear Dynam., 77 (2014), 1363-1375.  doi: 10.1007/s11071-014-1385-2.  Google Scholar

[14]

S. Li, J. Cao and Y. He, Pinning controllability scheme of directed complex delayed dynamical networks via periodically intermittent control, Discrete Dyn. Nat. Soc., (2016), 10 pp. doi: 10.1155/2016/1585928.  Google Scholar

[15]

C. LiZ. Dong and R. Situ, Almost sure stability of linear stochastic differential equations with jumps, Probab. Theory Related Fields, 123 (2002), 121-155.  doi: 10.1007/s004400200198.  Google Scholar

[16]

L. LiuY. Shen and F. Jiang, The almost sure asymptotic stability and $p$th moment asymptotic stability of nonlinear stochastic differential systems with polynomial growth, IEEE Trans. Automat. Control, 56 (2011), 1985-1990.  doi: 10.1109/TAC.2011.2146970.  Google Scholar

[17]

L. Liu and Y. Shen, Noise suppresses explosive solutions of differential systems with coefficients satisfying the polynomial growth condition, Automatica J. IFAC, 48 (2012), 619-624.  doi: 10.1016/j.automatica.2012.01.022.  Google Scholar

[18]

X. Mao, Stochastic stabilization and destabilization, Systems Control Lett., 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7.  Google Scholar

[19]

X. MaoG. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica J. IFAC, 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[20]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Tran. Automat. Control, 61 (2016), 1619-1624.  doi: 10.1109/TAC.2015.2471696.  Google Scholar

[21]

L. Pan and J. Cao, Stochastic quasi-synchronization for delayed dynamical networks via intermittent control, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1332-1343.  doi: 10.1016/j.cnsns.2011.07.010.  Google Scholar

[22]

A. Patel and B. Kosko, Stochastic resonance in continuous and spiking neuron models with Lévy noise, IEEE Trans. Neural Netw., 19 (2008), 1993-2008.  doi: 10.1109/TNN.2008.2005610.  Google Scholar

[23]

M. Scheutzow, Stabilisation and destabilisation by noise in the plane, Stochastic Anal. Appl., 11 (1993), 97-113.  doi: 10.1080/07362999308809304.  Google Scholar

[24]

M. Siakalli, Stability Properties of Stochastic Differential Equations Driven by Lévy Noise, Ph.D thesis, University of Sheffield, 2009. Google Scholar

[25]

Y. Wan and J. Cao, Distributed robust stabilization of linear multi-agent systems with intermittent control, J. Franklin Inst., 352 (2015), 4515-4527.  doi: 10.1016/j.jfranklin.2015.06.024.  Google Scholar

[26]

P. WangY. Hong and H. Su, Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control, Nonlinear Anal. Hybrid Syst., 29 (2018), 395-413.  doi: 10.1016/j.nahs.2018.03.006.  Google Scholar

[27]

F. Wu and S. Hu, Suppression and stabilisation of noise, Internat. J. Control, 82 (2009), 2150-2157.  doi: 10.1080/00207170902968108.  Google Scholar

[28]

F. WuG. Yin and Z. Jin, Kolmogorov-type systems with regime-switching jump diffusion perturbations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2293-2319.  doi: 10.3934/dcdsb.2016048.  Google Scholar

[29]

Y. XuX. WangH. Zhang and W. Xu, Stochastic stability for nonlinear systems driven by Lévy noise, Nonlinear Dynam., 68 (2012), 7-15.  doi: 10.1007/s11071-011-0199-8.  Google Scholar

[30]

Y. Xu, H. Zhou and W. Li, Stabilization of stochastic delayed systems with Lévy noise on networks via periodically intermittent control, Internat. J. Control, (2018). doi: 10.1080/00207179.2018.1479538.  Google Scholar

[31]

G. YinY. Talafha and F. Xi, Stochastic Liénard equations with random switching and two-time scales, Comm. Statist. Theory Methods, 43 (2014), 1533-1547.  doi: 10.1080/03610926.2012.741741.  Google Scholar

[32]

Q. Zhu, Asymptotic stability in the $p$th moment for stochastic differential equations with Lévy noise, J. Math. Anal. Appl., 416 (2014), 126-142.  doi: 10.1016/j.jmaa.2014.02.016.  Google Scholar

[33]

Q. Zhu, Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching, Internat. J. Control, 90 (2017), 1703-1712.  doi: 10.1080/00207179.2016.1219069.  Google Scholar

[34]

Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Systems Control Lett., 118 (2018), 62-68.  doi: 10.1016/j.sysconle.2018.05.015.  Google Scholar

[35]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Franklin Inst., 355 (2018), 3829-3852.  doi: 10.1016/j.jfranklin.2017.12.033.  Google Scholar

[36]

S. ZhuK. SunS. Zhou and Y. Shi, Stochastic suppression and almost surely stabilization of non-autonomous hybrid system with a new general one-sided polynomial, J. Franklin Inst., 354 (2017), 6550-6566.  doi: 10.1016/j.jfranklin.2017.08.007.  Google Scholar

[37]

X. ZongT. Li and J. Zhang, Consensus conditions for continuous-time multi-agent systems with additive and multiplicative measurement noises, SIAM J. Control Optim., 56 (2018), 19-52.  doi: 10.1137/15M1019775.  Google Scholar

[38]

X. ZongF. WuG. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems, SIAM J. Control Optim., 52 (2014), 2595-2622.  doi: 10.1137/14095251X.  Google Scholar

Figure 1.  The state $ x(t) $ of the system (29)
Figure 2.  The state $ x(t) $ of system (30)
Figure 5.  The exponent dynamical behaviors of state $ x(t) $ of the system (34)
Figure 3.  The state $ x(t) $ of the system (32)
Figure 4.  The state $ x(t) $ of system (33)
Figure 6.  The state $ x(t) $ of system (34)
[1]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[7]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[8]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[11]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[12]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[16]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[17]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[18]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[19]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[20]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (111)
  • HTML views (243)
  • Cited by (0)

Other articles
by authors

[Back to Top]