doi: 10.3934/dcdsb.2020109

Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps

1. 

School of Mathematics, Southeast University, Nanjing 211189, China

2. 

Research Center for Complex Systems and Network Sciences, Southeast University, Nanjing 211189, China

* Corresponding author: Jinde Cao

Received  January 2019 Revised  November 2019 Published  March 2020

Fund Project: This work was jointly supported by the Key Project of National Science Foundation of China under Grant No. 61833005

The main aim of this article is to examine almost sure exponential stabilization and suppression of nonlinear systems by periodically intermittent stochastic perturbation with jumps. On the one hand, some sufficient criteria ensure almost sure stabilization of the unstable deterministic system by applying exponential martingale inequality with jumps. On the other hand, sufficient conditions of destabilization are provided under which the system is stable by the well-known strong law of large numbers of local martingale and Poisson process. Both the sample Lyapunov exponents are closely related to the control period $ T $ and noise width $ \theta $. As for applications, the well-known Lorenz chaotic systems and nonlinear Liénard equation with jumps are discussed. Finally, two simulation examples demonstrating the effectiveness of the results are provided.

Citation: Wensheng Yin, Jinde Cao. Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020109
References:
[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2009.  doi: 10.1017/CBO9780511755323.  Google Scholar
[2]

D. Applebaum, Extending stochastic resonance for neuron models to general Lévy noise, IEEE Trans. Neural Netw., 20 (2009), 1993-1995.  doi: 10.1109/TNN.2009.2033183.  Google Scholar

[3]

D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise, J. Appl. Probab., 46 (2009), 1116-1129.  doi: 10.1239/jap/1261670692.  Google Scholar

[4]

D. Applebaum and M. Siakalli, Stochastic stabilization of dynamical systems using Lévy noise, Stoch. Dyn., 10 (2010), 509-527.  doi: 10.1142/S0219493710003066.  Google Scholar

[5]

A. D. ApplebyX. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise, IEEE Tran. Automat. Control, 53 (2008), 683-691.  doi: 10.1109/TAC.2008.919255.  Google Scholar

[6]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. doi: 10.1201/9780203485217.  Google Scholar

[7]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica J. IFAC, 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[8]

Y. FengX. YangQ. Song and J. Cao, Synchronization of memristive neural networks with mixed delays via quantized intermittent control, Appl. Math. Comput., 339 (2018), 874-887.  doi: 10.1016/j.amc.2018.08.009.  Google Scholar

[9]

R. Fernholz and I. Karatzas, Relative arbitrage in volatility-stabilized markets, Ann. Financ., 1 (2005), 149-177.  doi: 10.1007/s10436-004-0011-6.  Google Scholar

[10]

H. Gao and Y. Wang, Stochastic mutualism model under regime switching with Lévy jumps, Phys. A, 515 (2019), 355-375.  doi: 10.1016/j.physa.2018.09.189.  Google Scholar

[11]

B. GuoY. WuY. Xiao and C. Zhang, Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control, Appl. Math. Comput., 331 (2018), 341-357.  doi: 10.1016/j.amc.2018.03.020.  Google Scholar

[12]

R. Hasminskii, Stochastic Stability of Differential Equations, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980. doi: 10.1007/978-3-642-23280-0.  Google Scholar

[13]

N. Li and J. Cao, Intermittent control on switched networks via $\omega$-matrix measure method, Nonlinear Dynam., 77 (2014), 1363-1375.  doi: 10.1007/s11071-014-1385-2.  Google Scholar

[14]

S. Li, J. Cao and Y. He, Pinning controllability scheme of directed complex delayed dynamical networks via periodically intermittent control, Discrete Dyn. Nat. Soc., (2016), 10 pp. doi: 10.1155/2016/1585928.  Google Scholar

[15]

C. LiZ. Dong and R. Situ, Almost sure stability of linear stochastic differential equations with jumps, Probab. Theory Related Fields, 123 (2002), 121-155.  doi: 10.1007/s004400200198.  Google Scholar

[16]

L. LiuY. Shen and F. Jiang, The almost sure asymptotic stability and $p$th moment asymptotic stability of nonlinear stochastic differential systems with polynomial growth, IEEE Trans. Automat. Control, 56 (2011), 1985-1990.  doi: 10.1109/TAC.2011.2146970.  Google Scholar

[17]

L. Liu and Y. Shen, Noise suppresses explosive solutions of differential systems with coefficients satisfying the polynomial growth condition, Automatica J. IFAC, 48 (2012), 619-624.  doi: 10.1016/j.automatica.2012.01.022.  Google Scholar

[18]

X. Mao, Stochastic stabilization and destabilization, Systems Control Lett., 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7.  Google Scholar

[19]

X. MaoG. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica J. IFAC, 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[20]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Tran. Automat. Control, 61 (2016), 1619-1624.  doi: 10.1109/TAC.2015.2471696.  Google Scholar

[21]

L. Pan and J. Cao, Stochastic quasi-synchronization for delayed dynamical networks via intermittent control, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1332-1343.  doi: 10.1016/j.cnsns.2011.07.010.  Google Scholar

[22]

A. Patel and B. Kosko, Stochastic resonance in continuous and spiking neuron models with Lévy noise, IEEE Trans. Neural Netw., 19 (2008), 1993-2008.  doi: 10.1109/TNN.2008.2005610.  Google Scholar

[23]

M. Scheutzow, Stabilisation and destabilisation by noise in the plane, Stochastic Anal. Appl., 11 (1993), 97-113.  doi: 10.1080/07362999308809304.  Google Scholar

[24]

M. Siakalli, Stability Properties of Stochastic Differential Equations Driven by Lévy Noise, Ph.D thesis, University of Sheffield, 2009. Google Scholar

[25]

Y. Wan and J. Cao, Distributed robust stabilization of linear multi-agent systems with intermittent control, J. Franklin Inst., 352 (2015), 4515-4527.  doi: 10.1016/j.jfranklin.2015.06.024.  Google Scholar

[26]

P. WangY. Hong and H. Su, Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control, Nonlinear Anal. Hybrid Syst., 29 (2018), 395-413.  doi: 10.1016/j.nahs.2018.03.006.  Google Scholar

[27]

F. Wu and S. Hu, Suppression and stabilisation of noise, Internat. J. Control, 82 (2009), 2150-2157.  doi: 10.1080/00207170902968108.  Google Scholar

[28]

F. WuG. Yin and Z. Jin, Kolmogorov-type systems with regime-switching jump diffusion perturbations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2293-2319.  doi: 10.3934/dcdsb.2016048.  Google Scholar

[29]

Y. XuX. WangH. Zhang and W. Xu, Stochastic stability for nonlinear systems driven by Lévy noise, Nonlinear Dynam., 68 (2012), 7-15.  doi: 10.1007/s11071-011-0199-8.  Google Scholar

[30]

Y. Xu, H. Zhou and W. Li, Stabilization of stochastic delayed systems with Lévy noise on networks via periodically intermittent control, Internat. J. Control, (2018). doi: 10.1080/00207179.2018.1479538.  Google Scholar

[31]

G. YinY. Talafha and F. Xi, Stochastic Liénard equations with random switching and two-time scales, Comm. Statist. Theory Methods, 43 (2014), 1533-1547.  doi: 10.1080/03610926.2012.741741.  Google Scholar

[32]

Q. Zhu, Asymptotic stability in the $p$th moment for stochastic differential equations with Lévy noise, J. Math. Anal. Appl., 416 (2014), 126-142.  doi: 10.1016/j.jmaa.2014.02.016.  Google Scholar

[33]

Q. Zhu, Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching, Internat. J. Control, 90 (2017), 1703-1712.  doi: 10.1080/00207179.2016.1219069.  Google Scholar

[34]

Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Systems Control Lett., 118 (2018), 62-68.  doi: 10.1016/j.sysconle.2018.05.015.  Google Scholar

[35]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Franklin Inst., 355 (2018), 3829-3852.  doi: 10.1016/j.jfranklin.2017.12.033.  Google Scholar

[36]

S. ZhuK. SunS. Zhou and Y. Shi, Stochastic suppression and almost surely stabilization of non-autonomous hybrid system with a new general one-sided polynomial, J. Franklin Inst., 354 (2017), 6550-6566.  doi: 10.1016/j.jfranklin.2017.08.007.  Google Scholar

[37]

X. ZongT. Li and J. Zhang, Consensus conditions for continuous-time multi-agent systems with additive and multiplicative measurement noises, SIAM J. Control Optim., 56 (2018), 19-52.  doi: 10.1137/15M1019775.  Google Scholar

[38]

X. ZongF. WuG. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems, SIAM J. Control Optim., 52 (2014), 2595-2622.  doi: 10.1137/14095251X.  Google Scholar

show all references

References:
[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2009.  doi: 10.1017/CBO9780511755323.  Google Scholar
[2]

D. Applebaum, Extending stochastic resonance for neuron models to general Lévy noise, IEEE Trans. Neural Netw., 20 (2009), 1993-1995.  doi: 10.1109/TNN.2009.2033183.  Google Scholar

[3]

D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise, J. Appl. Probab., 46 (2009), 1116-1129.  doi: 10.1239/jap/1261670692.  Google Scholar

[4]

D. Applebaum and M. Siakalli, Stochastic stabilization of dynamical systems using Lévy noise, Stoch. Dyn., 10 (2010), 509-527.  doi: 10.1142/S0219493710003066.  Google Scholar

[5]

A. D. ApplebyX. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise, IEEE Tran. Automat. Control, 53 (2008), 683-691.  doi: 10.1109/TAC.2008.919255.  Google Scholar

[6]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. doi: 10.1201/9780203485217.  Google Scholar

[7]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica J. IFAC, 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[8]

Y. FengX. YangQ. Song and J. Cao, Synchronization of memristive neural networks with mixed delays via quantized intermittent control, Appl. Math. Comput., 339 (2018), 874-887.  doi: 10.1016/j.amc.2018.08.009.  Google Scholar

[9]

R. Fernholz and I. Karatzas, Relative arbitrage in volatility-stabilized markets, Ann. Financ., 1 (2005), 149-177.  doi: 10.1007/s10436-004-0011-6.  Google Scholar

[10]

H. Gao and Y. Wang, Stochastic mutualism model under regime switching with Lévy jumps, Phys. A, 515 (2019), 355-375.  doi: 10.1016/j.physa.2018.09.189.  Google Scholar

[11]

B. GuoY. WuY. Xiao and C. Zhang, Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control, Appl. Math. Comput., 331 (2018), 341-357.  doi: 10.1016/j.amc.2018.03.020.  Google Scholar

[12]

R. Hasminskii, Stochastic Stability of Differential Equations, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980. doi: 10.1007/978-3-642-23280-0.  Google Scholar

[13]

N. Li and J. Cao, Intermittent control on switched networks via $\omega$-matrix measure method, Nonlinear Dynam., 77 (2014), 1363-1375.  doi: 10.1007/s11071-014-1385-2.  Google Scholar

[14]

S. Li, J. Cao and Y. He, Pinning controllability scheme of directed complex delayed dynamical networks via periodically intermittent control, Discrete Dyn. Nat. Soc., (2016), 10 pp. doi: 10.1155/2016/1585928.  Google Scholar

[15]

C. LiZ. Dong and R. Situ, Almost sure stability of linear stochastic differential equations with jumps, Probab. Theory Related Fields, 123 (2002), 121-155.  doi: 10.1007/s004400200198.  Google Scholar

[16]

L. LiuY. Shen and F. Jiang, The almost sure asymptotic stability and $p$th moment asymptotic stability of nonlinear stochastic differential systems with polynomial growth, IEEE Trans. Automat. Control, 56 (2011), 1985-1990.  doi: 10.1109/TAC.2011.2146970.  Google Scholar

[17]

L. Liu and Y. Shen, Noise suppresses explosive solutions of differential systems with coefficients satisfying the polynomial growth condition, Automatica J. IFAC, 48 (2012), 619-624.  doi: 10.1016/j.automatica.2012.01.022.  Google Scholar

[18]

X. Mao, Stochastic stabilization and destabilization, Systems Control Lett., 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7.  Google Scholar

[19]

X. MaoG. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica J. IFAC, 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[20]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Tran. Automat. Control, 61 (2016), 1619-1624.  doi: 10.1109/TAC.2015.2471696.  Google Scholar

[21]

L. Pan and J. Cao, Stochastic quasi-synchronization for delayed dynamical networks via intermittent control, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1332-1343.  doi: 10.1016/j.cnsns.2011.07.010.  Google Scholar

[22]

A. Patel and B. Kosko, Stochastic resonance in continuous and spiking neuron models with Lévy noise, IEEE Trans. Neural Netw., 19 (2008), 1993-2008.  doi: 10.1109/TNN.2008.2005610.  Google Scholar

[23]

M. Scheutzow, Stabilisation and destabilisation by noise in the plane, Stochastic Anal. Appl., 11 (1993), 97-113.  doi: 10.1080/07362999308809304.  Google Scholar

[24]

M. Siakalli, Stability Properties of Stochastic Differential Equations Driven by Lévy Noise, Ph.D thesis, University of Sheffield, 2009. Google Scholar

[25]

Y. Wan and J. Cao, Distributed robust stabilization of linear multi-agent systems with intermittent control, J. Franklin Inst., 352 (2015), 4515-4527.  doi: 10.1016/j.jfranklin.2015.06.024.  Google Scholar

[26]

P. WangY. Hong and H. Su, Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control, Nonlinear Anal. Hybrid Syst., 29 (2018), 395-413.  doi: 10.1016/j.nahs.2018.03.006.  Google Scholar

[27]

F. Wu and S. Hu, Suppression and stabilisation of noise, Internat. J. Control, 82 (2009), 2150-2157.  doi: 10.1080/00207170902968108.  Google Scholar

[28]

F. WuG. Yin and Z. Jin, Kolmogorov-type systems with regime-switching jump diffusion perturbations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2293-2319.  doi: 10.3934/dcdsb.2016048.  Google Scholar

[29]

Y. XuX. WangH. Zhang and W. Xu, Stochastic stability for nonlinear systems driven by Lévy noise, Nonlinear Dynam., 68 (2012), 7-15.  doi: 10.1007/s11071-011-0199-8.  Google Scholar

[30]

Y. Xu, H. Zhou and W. Li, Stabilization of stochastic delayed systems with Lévy noise on networks via periodically intermittent control, Internat. J. Control, (2018). doi: 10.1080/00207179.2018.1479538.  Google Scholar

[31]

G. YinY. Talafha and F. Xi, Stochastic Liénard equations with random switching and two-time scales, Comm. Statist. Theory Methods, 43 (2014), 1533-1547.  doi: 10.1080/03610926.2012.741741.  Google Scholar

[32]

Q. Zhu, Asymptotic stability in the $p$th moment for stochastic differential equations with Lévy noise, J. Math. Anal. Appl., 416 (2014), 126-142.  doi: 10.1016/j.jmaa.2014.02.016.  Google Scholar

[33]

Q. Zhu, Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching, Internat. J. Control, 90 (2017), 1703-1712.  doi: 10.1080/00207179.2016.1219069.  Google Scholar

[34]

Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Systems Control Lett., 118 (2018), 62-68.  doi: 10.1016/j.sysconle.2018.05.015.  Google Scholar

[35]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Franklin Inst., 355 (2018), 3829-3852.  doi: 10.1016/j.jfranklin.2017.12.033.  Google Scholar

[36]

S. ZhuK. SunS. Zhou and Y. Shi, Stochastic suppression and almost surely stabilization of non-autonomous hybrid system with a new general one-sided polynomial, J. Franklin Inst., 354 (2017), 6550-6566.  doi: 10.1016/j.jfranklin.2017.08.007.  Google Scholar

[37]

X. ZongT. Li and J. Zhang, Consensus conditions for continuous-time multi-agent systems with additive and multiplicative measurement noises, SIAM J. Control Optim., 56 (2018), 19-52.  doi: 10.1137/15M1019775.  Google Scholar

[38]

X. ZongF. WuG. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems, SIAM J. Control Optim., 52 (2014), 2595-2622.  doi: 10.1137/14095251X.  Google Scholar

Figure 1.  The state $ x(t) $ of the system (29)
Figure 2.  The state $ x(t) $ of system (30)
Figure 5.  The exponent dynamical behaviors of state $ x(t) $ of the system (34)
Figure 3.  The state $ x(t) $ of the system (32)
Figure 4.  The state $ x(t) $ of system (33)
Figure 6.  The state $ x(t) $ of system (34)
[1]

Yong Ren, Wensheng Yin. Quasi sure exponential stabilization of nonlinear systems via intermittent $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5871-5883. doi: 10.3934/dcdsb.2019110

[2]

Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571

[3]

Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020077

[4]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[5]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[6]

Alison M. Melo, Leandro B. Morgado, Paulo R. Ruffino. Decomposition of stochastic flows generated by Stratonovich SDEs with jumps. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3209-3218. doi: 10.3934/dcdsb.2016094

[7]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[8]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[9]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[10]

Maria Francesca Carfora, Enrica Pirozzi. Stochastic modeling of the firing activity of coupled neurons periodically driven. Conference Publications, 2015, 2015 (special) : 195-203. doi: 10.3934/proc.2015.0195

[11]

Andrew Vlasic. Long-run analysis of the stochastic replicator dynamics in the presence of random jumps. Journal of Dynamics & Games, 2018, 5 (4) : 283-309. doi: 10.3934/jdg.2018018

[12]

Yaofeng Su. Almost surely invariance principle for non-stationary and random intermittent dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6585-6597. doi: 10.3934/dcds.2019286

[13]

Annie Millet, Svetlana Roudenko. Generalized KdV equation subject to a stochastic perturbation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1177-1198. doi: 10.3934/dcdsb.2018147

[14]

Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003

[15]

Hussain Alazki, Alexander Poznyak. Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: The attractive ellipsoid method. Journal of Industrial & Management Optimization, 2016, 12 (1) : 169-186. doi: 10.3934/jimo.2016.12.169

[16]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2020017

[17]

Daoyi Xu, Weisong Zhou. Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2161-2180. doi: 10.3934/dcds.2017093

[18]

Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325

[19]

Ruth F. Curtain, George Weiss. Strong stabilization of (almost) impedance passive systems by static output feedback. Mathematical Control & Related Fields, 2019, 9 (4) : 643-671. doi: 10.3934/mcrf.2019045

[20]

Chunyan Ji, Daqing Jiang. Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 867-889. doi: 10.3934/dcds.2012.32.867

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (26)
  • HTML views (36)
  • Cited by (0)

Other articles
by authors

[Back to Top]