doi: 10.3934/dcdsb.2020113

Differentiable solutions of the Feigenbaum-Kadanoff-Shenker equation

Numerical Simulation Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, China

* Corresponding author: Yong-Guo Shi

Received  May 2019 Revised  December 2019 Published  March 2020

Fund Project: The author is supported by Scientific Research Fund of SiChuan Provincial Education Department (18ZA0274)

The Feigenbaum-Kadanoff-Shenker equation for universal scaling in circle maps characterizes the quasiperiodic route to chaos. In this paper, using two different iterative methods, we construct all strictly decreasing continuous solutions. Furthermore, we present respectively the corresponding conditions to guarantee $ C^1 $ smoothness of those continuous solutions.

Citation: Yong-Guo Shi. Differentiable solutions of the Feigenbaum-Kadanoff-Shenker equation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020113
References:
[1]

L. Berg, A piecewise linear solution of Feigenbaum' s equation, Aequationes Math., 76 (2008), 197-199.  doi: 10.1007/s00010-007-2925-3.  Google Scholar

[2]

K. M. BriggsT. W. Dixon and G. Szekeres, Analytic solutions of the Cvitanović-Feigenbaum and Feigenbaum-Kadanoff-Shenker equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 347-357.  doi: 10.1142/S0218127498000206.  Google Scholar

[3]

K. M. Briggs, Feigenbaum Scaling in Discrete Dynamical Systems, Ph.D thesis, University of Melbourne, 1997. Google Scholar

[4]

M. Campanino and H. Epstein, On the existence of Feigenbaum's fixed point, Commun. Math. Phys., 79 (1981), 261-302.  doi: 10.1007/BF01942063.  Google Scholar

[5]

J.-P. Eckmann and H. Epstein, On the existence of fixed points of the composition operator for circle maps, Commun. Math. Phys., 107 (1986), 213-231.  doi: 10.1007/BF01209392.  Google Scholar

[6]

M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys., 19 (1978), 25-52.  doi: 10.1007/BF01020332.  Google Scholar

[7]

M. J. Feigenbaum, The universal metric properties of nonlinear transformations, J. Statist. Phys., 21 (1979), 669-706.  doi: 10.1007/BF01107909.  Google Scholar

[8]

M. J. FeigenbaumL. P. Kadanoff and S. J. Shenker, Quasiperiodicity in dissipative systems: A renormalization group analysis, Phys. D, 5 (1982), 370-386.  doi: 10.1016/0167-2789(82)90030-6.  Google Scholar

[9]

J. Groeneveld, On constructing complete solution classes of the Cvitanović-Feigenbaum equation, Phys. A, 138 (1986), 137-166.  doi: 10.1016/0378-4371(86)90177-9.  Google Scholar

[10]

M. Kuczma, On the functional equation $\varphi ^{n}(x) = g(x)$, Ann. Polon. Math., 11 (1961), 161-175.  doi: 10.4064/ap-11-2-161-175.  Google Scholar

[11]

M. Kuczma, Functional Equations in a Single Variable, Państwowe Wydawnictwo Naukowe, Warszawa, 1968.  Google Scholar

[12]

M. Kuczma, B. Choczewski and R. Ger, Iterative functional equations, in Encyclopedia of Mathematics and its Applications, Vol. 32, Cambridge University Press, Cambridge, 1990. doi: 10.1017/CBO9781139086639.  Google Scholar

[13]

O. E. Lanford III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N. S.), 6 (1982), 427-434.  doi: 10.1090/S0273-0979-1982-15008-X.  Google Scholar

[14]

O. E. Lanford III, Functional equations for circle homeomorphisms with golden ratio rotation number, J. Statist. Phys., 34 (1984), 57-73.  doi: 10.1007/BF01770349.  Google Scholar

[15]

B. D. Mestel, Computer Assisted Proof of Universality for Cubic Critical Maps of the Circle with Golden Mean Rotation Number, Ph.D thesis, University of Warwick, 1985. Google Scholar

[16]

M. Nauenberg, On the fixed points for circle maps, Phys. Lett. A, 92 (1982), 319-320.  doi: 10.1016/0375-9601(82)90898-2.  Google Scholar

[17]

J. Stephenson and Y. Wang, Relationships between the solutions of Feigenbaum's equation, Appl. Math. Lett., 4 (1991), 37-39.  doi: 10.1016/0893-9659(91)90031-P.  Google Scholar

[18]

J. Stephenson and Y. Wang, Relationships between eigenfunctions associated with solutions of Feigenbaum's equation, Appl. Math. Lett., 4 (1991), 53-56.  doi: 10.1016/0893-9659(91)90035-T.  Google Scholar

[19]

Y. Tang, $C^\infty$ even solutions of Feigenbaum functional equation, Acta Math. Sinica (Chin. Ser.), 40 (1997), 253-258.   Google Scholar

[20]

L. Yang and J. Z. Zhang, The second type of Feigenbaum's functional equations, Sci. Sinica Ser. A, 29 (1986), 1252-1262.   Google Scholar

show all references

References:
[1]

L. Berg, A piecewise linear solution of Feigenbaum' s equation, Aequationes Math., 76 (2008), 197-199.  doi: 10.1007/s00010-007-2925-3.  Google Scholar

[2]

K. M. BriggsT. W. Dixon and G. Szekeres, Analytic solutions of the Cvitanović-Feigenbaum and Feigenbaum-Kadanoff-Shenker equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 347-357.  doi: 10.1142/S0218127498000206.  Google Scholar

[3]

K. M. Briggs, Feigenbaum Scaling in Discrete Dynamical Systems, Ph.D thesis, University of Melbourne, 1997. Google Scholar

[4]

M. Campanino and H. Epstein, On the existence of Feigenbaum's fixed point, Commun. Math. Phys., 79 (1981), 261-302.  doi: 10.1007/BF01942063.  Google Scholar

[5]

J.-P. Eckmann and H. Epstein, On the existence of fixed points of the composition operator for circle maps, Commun. Math. Phys., 107 (1986), 213-231.  doi: 10.1007/BF01209392.  Google Scholar

[6]

M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys., 19 (1978), 25-52.  doi: 10.1007/BF01020332.  Google Scholar

[7]

M. J. Feigenbaum, The universal metric properties of nonlinear transformations, J. Statist. Phys., 21 (1979), 669-706.  doi: 10.1007/BF01107909.  Google Scholar

[8]

M. J. FeigenbaumL. P. Kadanoff and S. J. Shenker, Quasiperiodicity in dissipative systems: A renormalization group analysis, Phys. D, 5 (1982), 370-386.  doi: 10.1016/0167-2789(82)90030-6.  Google Scholar

[9]

J. Groeneveld, On constructing complete solution classes of the Cvitanović-Feigenbaum equation, Phys. A, 138 (1986), 137-166.  doi: 10.1016/0378-4371(86)90177-9.  Google Scholar

[10]

M. Kuczma, On the functional equation $\varphi ^{n}(x) = g(x)$, Ann. Polon. Math., 11 (1961), 161-175.  doi: 10.4064/ap-11-2-161-175.  Google Scholar

[11]

M. Kuczma, Functional Equations in a Single Variable, Państwowe Wydawnictwo Naukowe, Warszawa, 1968.  Google Scholar

[12]

M. Kuczma, B. Choczewski and R. Ger, Iterative functional equations, in Encyclopedia of Mathematics and its Applications, Vol. 32, Cambridge University Press, Cambridge, 1990. doi: 10.1017/CBO9781139086639.  Google Scholar

[13]

O. E. Lanford III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N. S.), 6 (1982), 427-434.  doi: 10.1090/S0273-0979-1982-15008-X.  Google Scholar

[14]

O. E. Lanford III, Functional equations for circle homeomorphisms with golden ratio rotation number, J. Statist. Phys., 34 (1984), 57-73.  doi: 10.1007/BF01770349.  Google Scholar

[15]

B. D. Mestel, Computer Assisted Proof of Universality for Cubic Critical Maps of the Circle with Golden Mean Rotation Number, Ph.D thesis, University of Warwick, 1985. Google Scholar

[16]

M. Nauenberg, On the fixed points for circle maps, Phys. Lett. A, 92 (1982), 319-320.  doi: 10.1016/0375-9601(82)90898-2.  Google Scholar

[17]

J. Stephenson and Y. Wang, Relationships between the solutions of Feigenbaum's equation, Appl. Math. Lett., 4 (1991), 37-39.  doi: 10.1016/0893-9659(91)90031-P.  Google Scholar

[18]

J. Stephenson and Y. Wang, Relationships between eigenfunctions associated with solutions of Feigenbaum's equation, Appl. Math. Lett., 4 (1991), 53-56.  doi: 10.1016/0893-9659(91)90035-T.  Google Scholar

[19]

Y. Tang, $C^\infty$ even solutions of Feigenbaum functional equation, Acta Math. Sinica (Chin. Ser.), 40 (1997), 253-258.   Google Scholar

[20]

L. Yang and J. Z. Zhang, The second type of Feigenbaum's functional equations, Sci. Sinica Ser. A, 29 (1986), 1252-1262.   Google Scholar

Figure 1.  $ g(\alpha^2)=a=\alpha^2=1/4 $
Figure 2.  $ g(\alpha^2)=a=1/2 $, $ \alpha^2=1/4 $
[1]

Pierre Lissy. Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory. Mathematical Control & Related Fields, 2017, 7 (1) : 21-40. doi: 10.3934/mcrf.2017002

[2]

Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045

[3]

Songhai Deng, Zhong Wan, Yanjiu Zhou. Optimization model and solution method for dynamically correlated two-product newsvendor problems based on Copula. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1637-1652. doi: 10.3934/dcdss.2020096

[4]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[5]

Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173

[6]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[7]

Morten Brøns. An iterative method for the canard explosion in general planar systems. Conference Publications, 2013, 2013 (special) : 77-83. doi: 10.3934/proc.2013.2013.77

[8]

Yuk L. Yung, Cameron Taketa, Ross Cheung, Run-Lie Shia. Infinite sum of the product of exponential and logarithmic functions, its analytic continuation, and application. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 229-248. doi: 10.3934/dcdsb.2010.13.229

[9]

Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317

[10]

Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066

[11]

Chadi Nour. Construction of solutions to a global Eikonal equation. Conference Publications, 2007, 2007 (Special) : 779-783. doi: 10.3934/proc.2007.2007.779

[12]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[13]

Francisco Guillén-González, Mamadou Sy. Iterative method for mass diffusion model with density dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 823-841. doi: 10.3934/dcdsb.2008.10.823

[14]

Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010

[15]

Raphael Kruse, Yue Wu. A randomized Milstein method for stochastic differential equations with non-differentiable drift coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3475-3502. doi: 10.3934/dcdsb.2018253

[16]

Tadeusz Antczak. The $ F $-objective function method for differentiable interval-valued vector optimization problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020093

[17]

Fang Chen, Ning Gao, Yao- Lin Jiang. On product-type generalized block AOR method for augmented linear systems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 797-809. doi: 10.3934/naco.2012.2.797

[18]

Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397

[19]

Justyna Jarczyk, Witold Jarczyk. Gaussian iterative algorithm and integrated automorphism equation for random means. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020135

[20]

Federico Cacciafesta, Anne-Sophie De Suzzoni. Weak dispersion for the Dirac equation on asymptotically flat and warped product spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4359-4398. doi: 10.3934/dcds.2019177

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (28)
  • HTML views (149)
  • Cited by (0)

Other articles
by authors

[Back to Top]