\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new result for boundedness and stabilization in a two-species chemotaxis system with two chemicals

  • * Corresponding author: Liangchen Wang

    * Corresponding author: Liangchen Wang 
Abstract Full Text(HTML) Related Papers Cited by
  • This paper deals with the following competitive two-species chemotaxis system with two chemicals

    $ \left\{ {\begin{array}{*{20}{l}}{{u_t} = \Delta u - {\chi _1}\nabla \cdot (u\nabla v) + {\mu _1}u\left( {1 - u - {a_1}w} \right),}&{x \in \Omega ,t > 0,}\\{0 = \Delta v - v + w,}&{x \in \Omega ,t > 0,}\\{{w_t} = \Delta w - {\chi _2}\nabla \cdot (w\nabla z) + {\mu _2}w\left( {1 - w - {a_2}u} \right),}&{x \in \Omega ,t > 0,}\\{0 = \Delta z - z + u,}&{x \in \Omega ,t > 0}\end{array}} \right. $

    under homogeneous Neumann boundary conditions in a bounded domain $ \Omega\subset \mathbb{R}^n $ ($ n\geq1 $), where the parameters $ \chi_i>0 $, $ \mu_i>0 $ and $ a_i>0 $ ($ i = 1, 2 $). It is proved that the corresponding initial-boundary value problem possesses a unique global bounded classical solution if one of the following cases holds:

    (ⅰ) $ q_1\leq a_1; $ (ⅱ) $ q_2\leq a_2 $;

    (ⅲ) $ q_1>a_1 $ and $ q_2> a_2 $ as well as $ (q_1-a_1)(q_2-a_2)<1 $,

    where $ q_1: = \frac{\chi_1}{\mu_1} $ and $ q_2: = \frac{\chi_2}{\mu_2} $, which partially improves the results of Zhang et al. [53] and Tu et al. [34].

    Moreover, it is proved that when $ a_1, a_2\in(0, 1) $ and $ \mu_1 $ and $ \mu_2 $ are sufficiently large, then any global bounded solution exponentially converges to $ \left(\frac{1-a_1}{1-a_1a_2}, \frac{1-a_2}{1-a_1a_2}, \frac{1-a_2}{1-a_1a_2}, \frac{1-a_1}{1-a_1a_2}\right) $ as $ t\rightarrow\infty $; When $ a_1>1>a_2>0 $ and $ \mu_2 $ is sufficiently large, then any global bounded solution exponentially converges to $ (0, 1, 1, 0) $ as $ t\rightarrow\infty $; When $ a_1 = 1>a_2>0 $ and $ \mu_2 $ is sufficiently large, then any global bounded solution algebraically converges to $ (0, 1, 1, 0) $ as $ t\rightarrow\infty $. This result improves the conditions assumed in [34] for asymptotic behavior.

    Mathematics Subject Classification: Primary: 35K35, 35A01, 35B44; Secondary: 35B35, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.
    [2] N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.
    [3] T. BlackJ. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., 81 (2016), 860-876.  doi: 10.1093/imamat/hxw036.
    [4] T. Black, Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1253-1272.  doi: 10.3934/dcdsb.2017061.
    [5] M. Eisenbach, Chemotaxis, Imperial College Press, London, 2004.
    [6] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.
    [7] M. HirataS. KurimaM. Mizukami and T. Yokota, Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics, J. Differential Equations, 263 (2017), 470-490.  doi: 10.1016/j.jde.2017.02.045.
    [8] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. 
    [9] D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270.  doi: 10.1007/s00332-010-9082-x.
    [10] B. Hu and Y. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., 64 (2017), 1-7.  doi: 10.1016/j.aml.2016.08.003.
    [11] K. Kang and A. Stevens, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Anal., 135 (2016), 57-72.  doi: 10.1016/j.na.2016.01.017.
    [12] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.
    [13] J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.
    [14] J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.
    [15] K. Lin and C. Mu, Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 36 (2016), 5025-5046.  doi: 10.3934/dcds.2016018.
    [16] K. Lin and C. Mu, Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2233-2260.  doi: 10.3934/dcdsb.2017094.
    [17] K. LinC. Mu and and L. Wang, Boundedness in a two-species chemotaxis system, Math. Methods Appl. Sci., 38 (2015), 5085-5096.  doi: 10.1002/mma.3429.
    [18] M. Mizukami, Boundedness and stabilization in a two-species chemotaxis-competition system of parabolic-parabolic-elliptic type, Math. Methods Appl. Sci., 41 (2018), 234-249.  doi: 10.1002/mma.4607.
    [19] M. Mizukami and T. Yokota, Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion, J. Differential Equations, 261 (2016), 2650-2669.  doi: 10.1016/j.jde.2016.05.008.
    [20] M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2301-2319.  doi: 10.3934/dcdsb.2017097.
    [21] M. Mizukami, Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 269-278.  doi: 10.3934/dcdss.2020015.
    [22] M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., 46 (2014), 3761-3781.  doi: 10.1137/140971853.
    [23] M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations, 258 (2015), 1592-1617.  doi: 10.1016/j.jde.2014.11.009.
    [24] K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. 
    [25] K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.
    [26] K. J. Painter, Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis, Bull. Math. Biol., 71 (2009), 1117-1147.  doi: 10.1007/s11538-009-9396-8.
    [27] H. Qiu and S. Guo, Global existence and stability in a two-species chemotaxis system, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1569-1587.  doi: 10.3934/dcdsb.2018220.
    [28] P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2007.
    [29] C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.
    [30] C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.
    [31] Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.
    [32] J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.
    [33] J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.  doi: 10.1088/0951-7715/25/5/1413.
    [34] X. TuC. MuP. Zheng and K. Lin, Global dynamics in a two-species chemotaxis-competition system with two signals, Discrete Contin. Dyn. Syst., 38 (2018), 3617-3636.  doi: 10.3934/dcds.2018156.
    [35] Z. Wang and T. Xiang, A class of chemotaxis systems with growth source and nonlinear secretion, preprint, arXiv: 1510.07204.
    [36] L. Wang, Improvement of conditions for boundedness in a two-species chemotaxis competition system of parabolic-parabolic-elliptic type, J. Math. Anal. Appl., 484 (2020), 123705, 10 pp. doi: 10.1016/j.jmaa.2019.123705.
    [37] L. WangC. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.
    [38] L. WangC. MuX. Hu and P. Zheng, Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant, J. Differential Equations, 264 (2018), 3369-3401.  doi: 10.1016/j.jde.2017.11.019.
    [39] L. WangJ. ZhangC. Mu and X. Hu, Boundedness and stabilization in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 191-221.  doi: 10.3934/dcdsb.2019178.
    [40] M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.
    [41] M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69 (2018), Art. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.
    [42] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.
    [43] M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.
    [44] M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2777-2793.  doi: 10.3934/dcdsb.2017135.
    [45] M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.
    [46] G. Wolansky, Multi-components chemotactic system in the absence of conflicts, European J. Appl. Math., 13 (2002), 641-661.  doi: 10.1017/S0956792501004843.
    [47] T. Xiang, Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source, J. Differential Equations, 258 (2015), 4275-4323.  doi: 10.1016/j.jde.2015.01.032.
    [48] T. Xiang, How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system?, J. Math. Anal. Appl., 459 (2018), 1172-1200.  doi: 10.1016/j.jmaa.2017.11.022.
    [49] X. Li and Y. Wang, On a fully parabolic chemotaxis system with Lotka-Volterra competitive kinetics, J. Math. Anal. Appl., 471 (2019), 584-598.  doi: 10.1016/j.jmaa.2018.10.093.
    [50] X. Li, On a fully parabolic chemotaxis system with nonlinear signal secretion, Nonlinear Anal. Real World Appl., 49 (2019), 24-44.  doi: 10.1016/j.nonrwa.2019.02.005.
    [51] X. Li and Y. Wang, Boundedness in a two-species chemotaxis parabolic system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2717-2729.  doi: 10.3934/dcdsb.2017132.
    [52] H. YuW. Wang and S. Zheng, Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals, Nonlinearity, 31 (2018), 502-514.  doi: 10.1088/1361-6544/aa96c9.
    [53] Q. Zhang, X. Liu and X. Yang, Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals, J. Math. Phys., 58 (2017), 111504, 9 pp. doi: 10.1063/1.5011725.
    [54] Q. Zhang, Competitive exclusion for a two-species chemotaxis system with two chemicals, Appl. Math. Lett., 83 (2018), 27-32.  doi: 10.1016/j.aml.2018.03.012.
    [55] Q. Zhang and Y. Li, Global solutions in a high-dimensional two-species chemotaxis model with Lotka-Volterra competitive kinetics, J. Math. Anal. Appl., 467 (2018), 751-767.  doi: 10.1016/j.jmaa.2018.07.037.
    [56] P. Zheng and C. Mu, Global boundedness in a two-competing-species chemotaxis system with two chemicals, Acta Appl. Math., 148 (2017), 157-177.  doi: 10.1007/s10440-016-0083-0.
    [57] P. ZhengC. Mu and Y. Mi, Global stability in a two-competing-species chemotaxis system with two chemicals, Differential Integral Equations, 31 (2018), 547-558. 
  • 加载中
SHARE

Article Metrics

HTML views(882) PDF downloads(537) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return