• Previous Article
    Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone
  • DCDS-B Home
  • This Issue
  • Next Article
    A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum
December  2020, 25(12): 4617-4640. doi: 10.3934/dcdsb.2020116

Uniform attractors of stochastic two-compartment Gray-Scott system with multiplicative noise

1. 

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

2. 

College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China

* Corresponding author: Jie Xin

Received  September 2019 Revised  January 2020 Published  March 2020

Fund Project: The second author is supported by the Natural Science Foundation of Shandong under Grant No. ZR2018QA002, the National Natural Science Foundation of China No. 11901342 and China Postdoctoral Science Foundation No. 2019M652350. The third author is supported by the NSF of China (No. 11371183) and the NSF of Shandong Province (No. ZR2013AM004)

We first show that the stochastic two-compartment Gray-Scott system generates a non-autonomous random dynamical system. Then we establish some uniform estimates of solutions for stochastic two-compartment Gray-Scott system with multiplicative noise. Finally, the existence of uniform and cocycle attractors is proved.

Citation: Junwei Feng, Hui Liu, Jie Xin. Uniform attractors of stochastic two-compartment Gray-Scott system with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4617-4640. doi: 10.3934/dcdsb.2020116
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[3]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845–869. doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[4]

V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics, in American Mathematical Society Colloquium Publications, Vol. 49, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[5]

I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[6]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[7]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[8]

H. CrauelP. E. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stoch. Dyn., 11 (2011), 301-314.  doi: 10.1142/S0219493711003292.  Google Scholar

[9]

H. CuiM. M. Freitas and J. A. Langa, On random cocycle attractors with autonomous attraction universes, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3379-3407.  doi: 10.3934/dcdsb.2017142.  Google Scholar

[10]

H. Cui and P. E. Kloeden, Invariant forward attractors of non-autonomous random dynamical systems, J. Differential Equations, 265 (2018), 6166-6186.  doi: 10.1016/j.jde.2018.07.028.  Google Scholar

[11]

H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268.  doi: 10.1016/j.jde.2017.03.018.  Google Scholar

[12]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoc. Anal. Appl., 24 (2006), 767-793.  doi: 10.1080/07362990600751860.  Google Scholar

[13]

F. Flandoli and B. Schmalfuss, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics Stochastics Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[14]

A. Gu and H. Xiang, Upper semicontinuity of random attractors for stochastic three-component reversible Gray-Scott system, Appl. Math. Comput., 225 (2013), 387-400.  doi: 10.1016/j.amc.2013.09.041.  Google Scholar

[15]

A. GuS. Zhou and Z. Wang, Uniform attractor of non-autonomous three-component reversible Gray-Scott system, Appl. Math. Comput., 219 (2013), 8718-8729.  doi: 10.1016/j.amc.2013.02.056.  Google Scholar

[16]

X. JiaJ. Gao and X. Ding, Random attractors for stochastic two-compartment Gray-Scott equations with a multiplicative noise, Open Math., 14 (2016), 586-602.  doi: 10.1515/math-2016-0052.  Google Scholar

[17]

H. Liu and H. Gao, Ergodicity and dynamics for the stochastic 3D Navier-Stokes equations with damping, Commun. Math. Sci., 16 (2018), 97-122.  doi: 10.4310/CMS.2018.v16.n1.a5.  Google Scholar

[18]

K. Lu and B. Wang, Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains, J. Differential Equations, 170 (2001), 281-316.  doi: 10.1006/jdeq.2000.3827.  Google Scholar

[19]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[20]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[21]

B. Wang, Sufficient and necessary criteria for exitence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[22]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[23]

B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations on $\Bbb R^n$, Front. Math. China, 4 (2009), 563-583.  doi: 10.1007/s11464-009-0033-5.  Google Scholar

[24]

Z. Wang and S. Zhou, Random attractor for stochastic reaction-diffusion equation with multiplicative noise on unbounded domains, J. Math. Anal. Appl., 384 (2011), 160-172.   Google Scholar

[25]

Y. You, Dynamics of two-compartment Gray-Scott equations, Nonlinear Anal., 74 (2011), 1969-1986.  doi: 10.1016/j.na.2010.11.004.  Google Scholar

[26]

Y. You, Dynamics of three-compartment reversible Gray-Scott model, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1671-1688.  doi: 10.3934/dcdsb.2010.14.1671.  Google Scholar

[27]

Y. You, Global attractor of the Gray-Scott equations, Commun. Pure Appl. Anal., 7 (2008), 947-970.  doi: 10.3934/cpaa.2008.7.947.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[3]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845–869. doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[4]

V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics, in American Mathematical Society Colloquium Publications, Vol. 49, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[5]

I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[6]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[7]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[8]

H. CrauelP. E. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stoch. Dyn., 11 (2011), 301-314.  doi: 10.1142/S0219493711003292.  Google Scholar

[9]

H. CuiM. M. Freitas and J. A. Langa, On random cocycle attractors with autonomous attraction universes, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3379-3407.  doi: 10.3934/dcdsb.2017142.  Google Scholar

[10]

H. Cui and P. E. Kloeden, Invariant forward attractors of non-autonomous random dynamical systems, J. Differential Equations, 265 (2018), 6166-6186.  doi: 10.1016/j.jde.2018.07.028.  Google Scholar

[11]

H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268.  doi: 10.1016/j.jde.2017.03.018.  Google Scholar

[12]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoc. Anal. Appl., 24 (2006), 767-793.  doi: 10.1080/07362990600751860.  Google Scholar

[13]

F. Flandoli and B. Schmalfuss, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics Stochastics Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[14]

A. Gu and H. Xiang, Upper semicontinuity of random attractors for stochastic three-component reversible Gray-Scott system, Appl. Math. Comput., 225 (2013), 387-400.  doi: 10.1016/j.amc.2013.09.041.  Google Scholar

[15]

A. GuS. Zhou and Z. Wang, Uniform attractor of non-autonomous three-component reversible Gray-Scott system, Appl. Math. Comput., 219 (2013), 8718-8729.  doi: 10.1016/j.amc.2013.02.056.  Google Scholar

[16]

X. JiaJ. Gao and X. Ding, Random attractors for stochastic two-compartment Gray-Scott equations with a multiplicative noise, Open Math., 14 (2016), 586-602.  doi: 10.1515/math-2016-0052.  Google Scholar

[17]

H. Liu and H. Gao, Ergodicity and dynamics for the stochastic 3D Navier-Stokes equations with damping, Commun. Math. Sci., 16 (2018), 97-122.  doi: 10.4310/CMS.2018.v16.n1.a5.  Google Scholar

[18]

K. Lu and B. Wang, Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains, J. Differential Equations, 170 (2001), 281-316.  doi: 10.1006/jdeq.2000.3827.  Google Scholar

[19]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[20]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[21]

B. Wang, Sufficient and necessary criteria for exitence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[22]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[23]

B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations on $\Bbb R^n$, Front. Math. China, 4 (2009), 563-583.  doi: 10.1007/s11464-009-0033-5.  Google Scholar

[24]

Z. Wang and S. Zhou, Random attractor for stochastic reaction-diffusion equation with multiplicative noise on unbounded domains, J. Math. Anal. Appl., 384 (2011), 160-172.   Google Scholar

[25]

Y. You, Dynamics of two-compartment Gray-Scott equations, Nonlinear Anal., 74 (2011), 1969-1986.  doi: 10.1016/j.na.2010.11.004.  Google Scholar

[26]

Y. You, Dynamics of three-compartment reversible Gray-Scott model, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1671-1688.  doi: 10.3934/dcdsb.2010.14.1671.  Google Scholar

[27]

Y. You, Global attractor of the Gray-Scott equations, Commun. Pure Appl. Anal., 7 (2008), 947-970.  doi: 10.3934/cpaa.2008.7.947.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[3]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[4]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[5]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[7]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[16]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[18]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[19]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (126)
  • HTML views (279)
  • Cited by (0)

Other articles
by authors

[Back to Top]