\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Effects of travel frequency on the persistence of mosquito-borne diseases

  • * Corresponding author: Daozhou Gao (dzgao@shnu.edu.cn)

    * Corresponding author: Daozhou Gao (dzgao@shnu.edu.cn)

This work was partially supported by National Natural Science Foundation of China grant 11601336, Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (TP2015050), and Shanghai Gaofeng Project for University Academic Development Program

Abstract Full Text(HTML) Figure(3) / Table(2) Related Papers Cited by
  • Travel frequency of people varies widely with occupation, age, gender, ethnicity, income, climate and other factors. Meanwhile, the distribution of the numbers of times people in different regions or with different travel behaviors bitten by mosquitoes may be nonuniform. To reflect these two heterogeneities, we develop a multipatch model to study the impact of travel frequency and human biting rate on the spatial spread of mosquito-borne diseases. The human population in each patch is divided into four classes: susceptible unfrequent, infectious unfrequent, susceptible frequent, and infectious frequent. The basic reproduction number $ \mathcal{R}_0 $ is defined. It is shown that the disease-free equilibrium is globally asymptotically stable if $ \mathcal{R}_0\leq 1 $, and there is a unique endemic equilibrium that is globally asymptotically stable if $ \mathcal{R}_0>1 $. A more detailed study is conducted on the single patch model. We use analytical and numerical methods to demonstrate that the model without considering the difference of humans in travel frequency mostly underestimates the risk of infection. Numerical simulations suggest that the greater the difference in travel frequency, the larger the underestimate of the transmission potential. In addition, the basic reproduction number $ \mathcal{R}_0 $ may decreasingly, or increasingly, or nonmonotonically vary when more people travel frequently.

    Mathematics Subject Classification: Primary: 92D30, 91D25, 34C60; Secondary: 34D20, 37N25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Flowchart of the mosquito-borne disease model in patch $ i $

    Figure 2.  The contour plot of $ \mathcal{R}_0-\hat{ \mathcal{R}}_0 $ versus the relative travel rates $ \tau_{12} $ and $ \tau_{21} $

    Figure 3.  The contour plot of $ \mathcal{R}_0 $ versus the relative frequency change rates $ \tau_1 $ and $ \tau_2 $. (a) simultaneously decreases, (b) simultaneously increases, (c) increases in $ \tau_1 $ but decreases $ \tau_2 $, (d) non-monotonically varies with $ \tau_1 $ and decreases in $ \tau_2 $

    Table 1.  Descriptions and ranges of parameters (time unit is day)

    Description Range
    $ a_i $ mosquito biting rate 0.1–1
    $ b_i^u $ transmission probability from an infectious mosquito 0.01–0.8
    to a susceptible unfrequent traveler per bite
    $ b_i^f $ transmission probability from an infectious mosquito 0.01–0.8
    to a susceptible frequent traveler per bite
    $ c_i^u $ transmission probability from an infectious unfrequent 0.072–0.64
    traveler to a susceptible mosquito per bite
    $ c_i^f $ transmission probability from an infectious frequent 0.072–0.64
    traveler to a susceptible mosquito per bite
    $ \gamma_i^u $ recovery rate of infectious unfrequent humans 0.005–0.05
    $ \gamma_i^f $ recovery rate of infectious frequent humans 0.005–0.05
    $ \mu_i $ mosquito mortality rate 0.05–0.2
    $ \sigma_i $ relative HBR of frequent travelers to unfrequent travelers 0.2–5
    $ c_{ij}^f $ travel rate of frequent travelers from patches $ j $ to $ i $ 0.03–0.1
    $ \tau_{ij} $ relative travel rate of unfrequent travelers 0–0.4
    to frequent travelers
    $ c_{ij}^u $ travel rate of unfrequent travelers from patches $ j $ to $ i $ $ c_{ij}^u=\tau_{ij}c_{ij}^f $
    $ d_{ij} $ travel rate of mosquitoes from patch $ j $ to patch $ i $ 0.001–0.03
    $ \phi_i^f $ change rate from frequent travelers to $ 2.7 \times 10^{-4} $
    unfrequent travelers –$ 9 \times 10^{-4} $
    $ \tau_i $ relative change rate of unfrequent travelers 0.1–0.5
    to frequent travelers
    $ \phi_i^u $ change rate from unfrequent travelers to $ \phi_i^u=\tau_i\phi_i^f $
    frequent travelers
    $ V/H $ ratio of mosquitoes to humans 1–10
     | Show Table
    DownLoad: CSV

    Table 2.  Parameter settings for Figure 3

    Symbol Figure 3a Figure 3b Figure 3c Figure 3d
    $ a_1 $ 0.438 0.380 0.535 0.161
    $ a_2 $ 0.402 0.100 0.147 0.051
    $ b_1 $ 0.548 0.686 0.373 0.656
    $ b_2 $ 0.642 0.159 0.178 0.716
    $ c_1 $ 0.398 0.324 0.608 0.586
    $ c_2 $ 0.636 0.085 0.618 0.403
    $ \gamma_1 $ 0.049 0.044 0.044 0.009
    $ \gamma_2 $ 0.026 0.029 0.014 0.020
    $ \mu_1 $ 0.135 0.066 0.094 0.053
    $ \mu_2 $ 0.165 0.194 0.174 0.103
    $ \sigma_1 $ 1 1 1 1
    $ \sigma_2 $ 1 1 1 1
    $ c_{12}^u $ 0.021 0.006 0.0128 0.0028
    $ c_{21}^u $ 0.018 0.002 0.0182 0.0005
    $ c_{12}^f $ 0.094 0.060 0.0534 0.0550
    $ c_{21}^f $ 0.092 0.076 0.0943 0.0497
    $ d_{12} $ 0 0 0 0
    $ d_{21} $ 0 0 0 0
    $ \phi_1^u $ 7.73 $ \times 10^{-5} $ 2.80$ \times 10^{-4} $ 1.40$ \times 10^{-4} $ 1.50 $ \times 10^{-4} $
    $ \phi_2^u $ 5.11$ \times 10^{-5} $ 3.46$ \times 10^{-4} $ 2.10$ \times 10^{-4} $ 1.50$ \times 10^{-4} $
    $ \phi_1^f $ 7.16 $ \times 10^{-4} $ 7.58$ \times 10^{-4} $ 5.35$ \times 10^{-4} $ 4.82$ \times 10^{-4} $
    $ \phi_2^f $ 3.24$ \times 10^{-4} $ 7.62$ \times 10^{-4} $ 4.67$ \times 10^{-4} $ 5.55$ \times 10^{-4} $
    $ V_1 $ 5859 23633 6065 13838
    $ V_2 $ 18790 29698 17129 19918
    $ H $ 10000 10000 10000 10000
     | Show Table
    DownLoad: CSV
  • [1] J. AlegreS. Mateo and L. Pou, Participation in tourism consumption and the intensity of participation: an analysis of their socio-demographic and economic determinants, Tourism Econo., 15 (2009), 531-546.  doi: 10.5367/000000009789036521.
    [2] M. Anjomruz, M. A. Oshaghi, A. A. Pourfatollah, et al., Preferential feeding success of laboratory reared Anopheles stephensi mosquitoes according to ABO blood group status, Acta Trop., 140 (2014), 118-123. doi: 10.1016/j.actatropica.2014.08.012.
    [3] J. L. Aron, Mathematical modelling of immunity to malaria, Math. Biosci., 90 (1988), 385-396.  doi: 10.1016/0025-5564(88)90076-4.
    [4] J. L. Aron and R. M. May, The population dynamics of malaria, in The Population Dynamics of Infectious Diseases: Theory and Applications (eds. R. M. Anderson), Springer, (1982), 139–179. doi: 10.1007/978-1-4899-2901-3.
    [5] P. AugerE. KouokamG. SalletM. Tchuente and B. Tsanou, The Ross–Macdonald model in a patchy environment, Math. Biosci., 216 (2008), 123-131.  doi: 10.1016/j.mbs.2008.08.010.
    [6] C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. E. Axelrod, M. Kimmel and M. Langlais), Wuerz, Winnipeg, Canada, (1995), 33–50.
    [7] N. ChitnisJ. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.  doi: 10.1007/s11538-008-9299-0.
    [8] C. Cosner, Models for the effects of host movement in vector-borne disease systems, Math. Biosci., 270 (2015), 192-197.  doi: 10.1016/j.mbs.2015.06.015.
    [9] C. CosnerJ. C. BeierR. S. CantrellD. ImpoinvilL. KapitanskiM. D. PottsA. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol., 258 (2009), 550-560.  doi: 10.1016/j.jtbi.2009.02.016.
    [10] J. M. Denstadli, Analysing air travel: a comparison of different survey methods and data collection procedures, J. Travel Res., 39 (2000), 4-10.  doi: 10.1177/004728750003900102.
    [11] O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.  doi: 10.1007/BF00178324.
    [12] C. Dye and G. Hasibeder, Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others, Trans. R. Soc. Trop. Med. Hyg., 80 (1986), 69-77.  doi: 10.1016/0035-9203(86)90199-9.
    [13] J. L. Gallup and J. D. Sachs, The economic burden of malaria, Am. J. Trop. Med. Hyg., 64 (2001), 85-96.  doi: 10.4269/ajtmh.2001.64.85.
    [14] D. Gao, Travel frequency and infectious diseases, SIAM J. Appl. Math., 79 (2019), 1581-1606.  doi: 10.1137/18M1211957.
    [15] D. GaoA. AmzaB. NassirouB. KadriN. Sippl-SwezeyF. LiuS. F. AckleyT. M. Lietman and T. C. Porco, Optimal seasonal timing of oral azithromycin for malaria, Am. J. Trop. Med. Hyg., 91 (2014), 936-942.  doi: 10.4269/ajtmh.13-0474.
    [16] D. Gao and C. Dong, Fast diffusion inhibits disease outbreaks, Proc. Amer. Math. Soc., 148 (2020), 1709-1722.  doi: 10.1090/proc/14868.
    [17] D. Gao, Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell and S. Ruan, Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis, Sci. Rep., 6 (2016), 28070. doi: 10.1038/srep28070.
    [18] D. GaoY. Lou and S. Ruan, A periodic Ross–Macdonald model in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3133-3145.  doi: 10.3934/dcdsb.2014.19.3133.
    [19] D. Gao and S. Ruan, A multipatch malaria model with logistic growth populations, SIAM J. Appl. Math., 72 (2012), 819-841.  doi: 10.1137/110850761.
    [20] D. Gao and S. Ruan, Malaria models with spatial effects, in Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases (eds. D. Chen, B. Moulin and J. Wu), John Wiley & Sons, (2014), 109–136. doi: 10.1002/9781118630013.ch6.
    [21] D. GaoP. van den Driessche and C. Cosner, Habitat fragmentation promotes malaria persistence, J. Math. Biol., 79 (2019), 2255-2280.  doi: 10.1007/s00285-019-01428-2.
    [22] N. G. Gratz, Emerging and resurging vector-borne diseases, Annu. Rev. Entomol., 44 (1999), 51-75.  doi: 10.1146/annurev.ento.44.1.51.
    [23] M. G. Guzman and E. Harris, Dengue, Lancet, 385 (2015), 453-465.  doi: 10.1016/S0140-6736(14)60572-9.
    [24] G. Harrison Mosquitoes, Malaria and Man: a History of the Hostilities since 1880, John Murray, London, 1978.
    [25] G. Hasibeder and C. Dye, Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment, Theor. Popu. Biol., 33 (1988), 31-53.  doi: 10.1016/0040-5809(88)90003-2.
    [26] T. D. HollingsworthN. M. Ferguson and R. M. Anderson, Frequent travelers and rate of spread of epidemics, Emerg. Infect. Dis., 13 (2007), 1288-1294.  doi: 10.3201/eid1309.070081.
    [27] R. A. Horn and  C. R. JohnsonMatrix Analysis, 2$^nd$ edition, Cambridge University Press, New York, 2013. 
    [28] J. C. Koella and R. Antia, Epidemiological models for the spread of anti-malarial resistance, Malar. J., 2 (2003), 3. doi: 10.1186/1475-2875-2-3.
    [29] R. S. Lanciotti, J. T. Roehrig, V. Deubel, et al., Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States, Science, 286 (1999), 2333-2337. doi: 10.1126/science.286.5448.2333.
    [30] S. LimJ. K. Lim and I. Yoon, An update on Zika virus in Asia, Infect. Chemother., 49 (2017), 91-100.  doi: 10.3947/ic.2017.49.2.91.
    [31] N. LosadaE. AlénT. Domínguez and J. L. Nicolau, Travel frequency of seniors tourists, Tour. Manag., 53 (2016), 88-95.  doi: 10.1016/j.tourman.2015.09.013.
    [32] Y. Lou and X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish, Bull. Math. Biol., 73 (2011), 2384-2407.  doi: 10.1007/s11538-011-9628-6.
    [33] G. MacdonaldThe Epidemiology and Control of Malaria, Oxford University Press, London, 1957. 
    [34] S. Mandal, R. R. Sarkar and S. Sinha, Mathematical models of malaria–a review, Malar. J., 10 (2011), 202. doi: 10.1186/1475-2875-10-202.
    [35] P. Martens and L. Hall, Malaria on the move: human population movement and malaria transmission, Emerg. Infect. Dis., 6 (2000), 103-109.  doi: 10.3201/eid0602.000202.
    [36] P. E. Parham and E. Michael, Modeling the effects of weather and climate change on malaria transmission, Environ. Health Perspect., 118 (2010), 620-626.  doi: 10.1289/ehp.0901256.
    [37] G. R. PortP. F. L. Boreham and J. H. Bryan, The relationship of host size to feeding by mosquitoes of the Anopheles gambiae Giles complex (Diptera: Culicidae), Bull. Entomol. Res., 70 (1980), 133-144.  doi: 10.1017/S0007485300009834.
    [38] R. C. Reiner, T. A. Perkins, C. M. Barker, et al., A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010, J. R. Soc. Interface, 10 (2013), 20120921. doi: 10.1098/rsif.2012.0921.
    [39] A. Robinson, A. O. Busula, M. A. Voets, et al., Plasmodium-associated changes in human odor attract mosquitoes, Proc. Natl. Acad. Sci. USA, 115 (2018), E4209–E4218. doi: 10.1073/pnas.1721610115.
    [40] R. Ross, The Prevention of Malaria, John Murray, London, 1911.
    [41] S. RuanD. Xiao and J. C. Beier, On the delayed Ross–Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098-1114.  doi: 10.1007/s11538-007-9292-z.
    [42] H. L. Smith, Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems, Vol 41, Amer. Math. Soc., Providence, RI, 1995.
    [43] J. Sutcliffe, X. Ji and S. Yin, How many holes is too many? A prototype tool for estimating mosquito entry risk into damaged bed nets, Malar. J., 16 (2017), 304. doi: 10.1186/s12936-017-1951-4.
    [44] A. J. Tatem and D. L. Smith, International population movements and regional Plasmodium falciparum malaria elimination strategies, Proc. Natl. Acad. Sci. USA, 107 (2010), 12222-12227.  doi: 10.1073/pnas.1002971107.
    [45] S. Tilley and D. Houston, The gender turnaround: young women now travelling more than young men, J. Transp. Geogr., 54 (2016), 349-358.  doi: 10.1016/j.jtrangeo.2016.06.022.
    [46] U.S. Department of Transportation–Federal Highway Administration, Summary of Travel Trends: 2017 National Household Travel Survey, 2018. Available from: https://nhts.ornl.gov/assets/2017-nhts-summary-travel-trends.pdf.
    [47] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.
    [48] P. F. M. Verdonschot and A. A. Besse-Lototskaya, Flight distance of mosquitoes (Culicidae): a metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands, Limnologica, 45 (2014), 69-79.  doi: 10.1016/j.limno.2013.11.002.
    [49] World Health Organization, Yellow Fever Situation Report, 2016. Available from: https://www.who.int/emergencies/yellow-fever/situation-reports/28-october-2016/en/.
    [50] World Health Organization, World Malaria Report 2018, 2018. Available from: http://www.who.int/malaria/publications/world-malaria-report-2018/en.
    [51] WorldAtlas, Countries that Travel the Most, 2019. Available from: https://www.worldatlas.com/articles/countries-whose-citizens-travel-the-most.html.
    [52] X.-Q. Zhao, Dynamical Systems in Population Biology, $2^nd$ edition, Springer-Verlag, New York, 2017. doi: 10.1007/978-3-319-56433-3.
    [53] X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Can. Appl. Math. Quart., 4 (1996), 421-444. 
  • 加载中

Figures(3)

Tables(2)

SHARE

Article Metrics

HTML views(700) PDF downloads(519) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return