# American Institute of Mathematical Sciences

• Previous Article
Global mass-preserving solutions for a two-dimensional chemotaxis system with rotational flux components coupled with a full Navier–Stokes equation
• DCDS-B Home
• This Issue
• Next Article
A delayed differential equation model for mosquito population suppression with sterile mosquitoes
December  2020, 25(12): 4677-4701. doi: 10.3934/dcdsb.2020119

## Effects of travel frequency on the persistence of mosquito-borne diseases

 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

* Corresponding author: Daozhou Gao (dzgao@shnu.edu.cn)

Received  October 2019 Published  December 2020 Early access  March 2020

Fund Project: This work was partially supported by National Natural Science Foundation of China grant 11601336, Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (TP2015050), and Shanghai Gaofeng Project for University Academic Development Program

Travel frequency of people varies widely with occupation, age, gender, ethnicity, income, climate and other factors. Meanwhile, the distribution of the numbers of times people in different regions or with different travel behaviors bitten by mosquitoes may be nonuniform. To reflect these two heterogeneities, we develop a multipatch model to study the impact of travel frequency and human biting rate on the spatial spread of mosquito-borne diseases. The human population in each patch is divided into four classes: susceptible unfrequent, infectious unfrequent, susceptible frequent, and infectious frequent. The basic reproduction number $\mathcal{R}_0$ is defined. It is shown that the disease-free equilibrium is globally asymptotically stable if $\mathcal{R}_0\leq 1$, and there is a unique endemic equilibrium that is globally asymptotically stable if $\mathcal{R}_0>1$. A more detailed study is conducted on the single patch model. We use analytical and numerical methods to demonstrate that the model without considering the difference of humans in travel frequency mostly underestimates the risk of infection. Numerical simulations suggest that the greater the difference in travel frequency, the larger the underestimate of the transmission potential. In addition, the basic reproduction number $\mathcal{R}_0$ may decreasingly, or increasingly, or nonmonotonically vary when more people travel frequently.

Citation: Xianyun Chen, Daozhou Gao. Effects of travel frequency on the persistence of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4677-4701. doi: 10.3934/dcdsb.2020119
##### References:
 [1] J. Alegre, S. Mateo and L. Pou, Participation in tourism consumption and the intensity of participation: an analysis of their socio-demographic and economic determinants, Tourism Econo., 15 (2009), 531-546.  doi: 10.5367/000000009789036521. [2] M. Anjomruz, M. A. Oshaghi, A. A. Pourfatollah, et al., Preferential feeding success of laboratory reared Anopheles stephensi mosquitoes according to ABO blood group status, Acta Trop., 140 (2014), 118-123. doi: 10.1016/j.actatropica.2014.08.012. [3] J. L. Aron, Mathematical modelling of immunity to malaria, Math. Biosci., 90 (1988), 385-396.  doi: 10.1016/0025-5564(88)90076-4. [4] J. L. Aron and R. M. May, The population dynamics of malaria, in The Population Dynamics of Infectious Diseases: Theory and Applications (eds. R. M. Anderson), Springer, (1982), 139–179. doi: 10.1007/978-1-4899-2901-3. [5] P. Auger, E. Kouokam, G. Sallet, M. Tchuente and B. Tsanou, The Ross–Macdonald model in a patchy environment, Math. Biosci., 216 (2008), 123-131.  doi: 10.1016/j.mbs.2008.08.010. [6] C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. E. Axelrod, M. Kimmel and M. Langlais), Wuerz, Winnipeg, Canada, (1995), 33–50. [7] N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.  doi: 10.1007/s11538-008-9299-0. [8] C. Cosner, Models for the effects of host movement in vector-borne disease systems, Math. Biosci., 270 (2015), 192-197.  doi: 10.1016/j.mbs.2015.06.015. [9] C. Cosner, J. C. Beier, R. S. Cantrell, D. Impoinvil, L. Kapitanski, M. D. Potts, A. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol., 258 (2009), 550-560.  doi: 10.1016/j.jtbi.2009.02.016. [10] J. M. Denstadli, Analysing air travel: a comparison of different survey methods and data collection procedures, J. Travel Res., 39 (2000), 4-10.  doi: 10.1177/004728750003900102. [11] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.  doi: 10.1007/BF00178324. [12] C. Dye and G. Hasibeder, Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others, Trans. R. Soc. Trop. Med. Hyg., 80 (1986), 69-77.  doi: 10.1016/0035-9203(86)90199-9. [13] J. L. Gallup and J. D. Sachs, The economic burden of malaria, Am. J. Trop. Med. Hyg., 64 (2001), 85-96.  doi: 10.4269/ajtmh.2001.64.85. [14] D. Gao, Travel frequency and infectious diseases, SIAM J. Appl. Math., 79 (2019), 1581-1606.  doi: 10.1137/18M1211957. [15] D. Gao, A. Amza, B. Nassirou, B. Kadri, N. Sippl-Swezey, F. Liu, S. F. Ackley, T. M. Lietman and T. C. Porco, Optimal seasonal timing of oral azithromycin for malaria, Am. J. Trop. Med. Hyg., 91 (2014), 936-942.  doi: 10.4269/ajtmh.13-0474. [16] D. Gao and C. Dong, Fast diffusion inhibits disease outbreaks, Proc. Amer. Math. Soc., 148 (2020), 1709-1722.  doi: 10.1090/proc/14868. [17] D. Gao, Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell and S. Ruan, Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis, Sci. Rep., 6 (2016), 28070. doi: 10.1038/srep28070. [18] D. Gao, Y. Lou and S. Ruan, A periodic Ross–Macdonald model in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3133-3145.  doi: 10.3934/dcdsb.2014.19.3133. [19] D. Gao and S. Ruan, A multipatch malaria model with logistic growth populations, SIAM J. Appl. Math., 72 (2012), 819-841.  doi: 10.1137/110850761. [20] D. Gao and S. Ruan, Malaria models with spatial effects, in Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases (eds. D. Chen, B. Moulin and J. Wu), John Wiley & Sons, (2014), 109–136. doi: 10.1002/9781118630013.ch6. [21] D. Gao, P. van den Driessche and C. Cosner, Habitat fragmentation promotes malaria persistence, J. Math. Biol., 79 (2019), 2255-2280.  doi: 10.1007/s00285-019-01428-2. [22] N. G. Gratz, Emerging and resurging vector-borne diseases, Annu. Rev. Entomol., 44 (1999), 51-75.  doi: 10.1146/annurev.ento.44.1.51. [23] M. G. Guzman and E. Harris, Dengue, Lancet, 385 (2015), 453-465.  doi: 10.1016/S0140-6736(14)60572-9. [24] G. Harrison Mosquitoes, Malaria and Man: a History of the Hostilities since 1880, John Murray, London, 1978. [25] G. Hasibeder and C. Dye, Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment, Theor. Popu. Biol., 33 (1988), 31-53.  doi: 10.1016/0040-5809(88)90003-2. [26] T. D. Hollingsworth, N. M. Ferguson and R. M. Anderson, Frequent travelers and rate of spread of epidemics, Emerg. Infect. Dis., 13 (2007), 1288-1294.  doi: 10.3201/eid1309.070081. [27] R. A. Horn and C. R. Johnson, Matrix Analysis, 2$^nd$ edition, Cambridge University Press, New York, 2013. [28] J. C. Koella and R. Antia, Epidemiological models for the spread of anti-malarial resistance, Malar. J., 2 (2003), 3. doi: 10.1186/1475-2875-2-3. [29] R. S. Lanciotti, J. T. Roehrig, V. Deubel, et al., Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States, Science, 286 (1999), 2333-2337. doi: 10.1126/science.286.5448.2333. [30] S. Lim, J. K. Lim and I. Yoon, An update on Zika virus in Asia, Infect. Chemother., 49 (2017), 91-100.  doi: 10.3947/ic.2017.49.2.91. [31] N. Losada, E. Alén, T. Domínguez and J. L. Nicolau, Travel frequency of seniors tourists, Tour. Manag., 53 (2016), 88-95.  doi: 10.1016/j.tourman.2015.09.013. [32] Y. Lou and X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish, Bull. Math. Biol., 73 (2011), 2384-2407.  doi: 10.1007/s11538-011-9628-6. [33] G. Macdonald, The Epidemiology and Control of Malaria, Oxford University Press, London, 1957. [34] S. Mandal, R. R. Sarkar and S. Sinha, Mathematical models of malaria–a review, Malar. J., 10 (2011), 202. doi: 10.1186/1475-2875-10-202. [35] P. Martens and L. Hall, Malaria on the move: human population movement and malaria transmission, Emerg. Infect. Dis., 6 (2000), 103-109.  doi: 10.3201/eid0602.000202. [36] P. E. Parham and E. Michael, Modeling the effects of weather and climate change on malaria transmission, Environ. Health Perspect., 118 (2010), 620-626.  doi: 10.1289/ehp.0901256. [37] G. R. Port, P. F. L. Boreham and J. H. Bryan, The relationship of host size to feeding by mosquitoes of the Anopheles gambiae Giles complex (Diptera: Culicidae), Bull. Entomol. Res., 70 (1980), 133-144.  doi: 10.1017/S0007485300009834. [38] R. C. Reiner, T. A. Perkins, C. M. Barker, et al., A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010, J. R. Soc. Interface, 10 (2013), 20120921. doi: 10.1098/rsif.2012.0921. [39] A. Robinson, A. O. Busula, M. A. Voets, et al., Plasmodium-associated changes in human odor attract mosquitoes, Proc. Natl. Acad. Sci. USA, 115 (2018), E4209–E4218. doi: 10.1073/pnas.1721610115. [40] R. Ross, The Prevention of Malaria, John Murray, London, 1911. [41] S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross–Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098-1114.  doi: 10.1007/s11538-007-9292-z. [42] H. L. Smith, Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems, Vol 41, Amer. Math. Soc., Providence, RI, 1995. [43] J. Sutcliffe, X. Ji and S. Yin, How many holes is too many? A prototype tool for estimating mosquito entry risk into damaged bed nets, Malar. J., 16 (2017), 304. doi: 10.1186/s12936-017-1951-4. [44] A. J. Tatem and D. L. Smith, International population movements and regional Plasmodium falciparum malaria elimination strategies, Proc. Natl. Acad. Sci. USA, 107 (2010), 12222-12227.  doi: 10.1073/pnas.1002971107. [45] S. Tilley and D. Houston, The gender turnaround: young women now travelling more than young men, J. Transp. Geogr., 54 (2016), 349-358.  doi: 10.1016/j.jtrangeo.2016.06.022. [46] U.S. Department of Transportation–Federal Highway Administration, Summary of Travel Trends: 2017 National Household Travel Survey, 2018. Available from: https://nhts.ornl.gov/assets/2017-nhts-summary-travel-trends.pdf. [47] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6. [48] P. F. M. Verdonschot and A. A. Besse-Lototskaya, Flight distance of mosquitoes (Culicidae): a metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands, Limnologica, 45 (2014), 69-79.  doi: 10.1016/j.limno.2013.11.002. [49] World Health Organization, Yellow Fever Situation Report, 2016. Available from: https://www.who.int/emergencies/yellow-fever/situation-reports/28-october-2016/en/. [50] World Health Organization, World Malaria Report 2018, 2018. Available from: http://www.who.int/malaria/publications/world-malaria-report-2018/en. [51] WorldAtlas, Countries that Travel the Most, 2019. Available from: https://www.worldatlas.com/articles/countries-whose-citizens-travel-the-most.html. [52] X.-Q. Zhao, Dynamical Systems in Population Biology, $2^nd$ edition, Springer-Verlag, New York, 2017. doi: 10.1007/978-3-319-56433-3. [53] X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Can. Appl. Math. Quart., 4 (1996), 421-444.

show all references

##### References:
 [1] J. Alegre, S. Mateo and L. Pou, Participation in tourism consumption and the intensity of participation: an analysis of their socio-demographic and economic determinants, Tourism Econo., 15 (2009), 531-546.  doi: 10.5367/000000009789036521. [2] M. Anjomruz, M. A. Oshaghi, A. A. Pourfatollah, et al., Preferential feeding success of laboratory reared Anopheles stephensi mosquitoes according to ABO blood group status, Acta Trop., 140 (2014), 118-123. doi: 10.1016/j.actatropica.2014.08.012. [3] J. L. Aron, Mathematical modelling of immunity to malaria, Math. Biosci., 90 (1988), 385-396.  doi: 10.1016/0025-5564(88)90076-4. [4] J. L. Aron and R. M. May, The population dynamics of malaria, in The Population Dynamics of Infectious Diseases: Theory and Applications (eds. R. M. Anderson), Springer, (1982), 139–179. doi: 10.1007/978-1-4899-2901-3. [5] P. Auger, E. Kouokam, G. Sallet, M. Tchuente and B. Tsanou, The Ross–Macdonald model in a patchy environment, Math. Biosci., 216 (2008), 123-131.  doi: 10.1016/j.mbs.2008.08.010. [6] C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. E. Axelrod, M. Kimmel and M. Langlais), Wuerz, Winnipeg, Canada, (1995), 33–50. [7] N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.  doi: 10.1007/s11538-008-9299-0. [8] C. Cosner, Models for the effects of host movement in vector-borne disease systems, Math. Biosci., 270 (2015), 192-197.  doi: 10.1016/j.mbs.2015.06.015. [9] C. Cosner, J. C. Beier, R. S. Cantrell, D. Impoinvil, L. Kapitanski, M. D. Potts, A. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol., 258 (2009), 550-560.  doi: 10.1016/j.jtbi.2009.02.016. [10] J. M. Denstadli, Analysing air travel: a comparison of different survey methods and data collection procedures, J. Travel Res., 39 (2000), 4-10.  doi: 10.1177/004728750003900102. [11] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.  doi: 10.1007/BF00178324. [12] C. Dye and G. Hasibeder, Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others, Trans. R. Soc. Trop. Med. Hyg., 80 (1986), 69-77.  doi: 10.1016/0035-9203(86)90199-9. [13] J. L. Gallup and J. D. Sachs, The economic burden of malaria, Am. J. Trop. Med. Hyg., 64 (2001), 85-96.  doi: 10.4269/ajtmh.2001.64.85. [14] D. Gao, Travel frequency and infectious diseases, SIAM J. Appl. Math., 79 (2019), 1581-1606.  doi: 10.1137/18M1211957. [15] D. Gao, A. Amza, B. Nassirou, B. Kadri, N. Sippl-Swezey, F. Liu, S. F. Ackley, T. M. Lietman and T. C. Porco, Optimal seasonal timing of oral azithromycin for malaria, Am. J. Trop. Med. Hyg., 91 (2014), 936-942.  doi: 10.4269/ajtmh.13-0474. [16] D. Gao and C. Dong, Fast diffusion inhibits disease outbreaks, Proc. Amer. Math. Soc., 148 (2020), 1709-1722.  doi: 10.1090/proc/14868. [17] D. Gao, Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell and S. Ruan, Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis, Sci. Rep., 6 (2016), 28070. doi: 10.1038/srep28070. [18] D. Gao, Y. Lou and S. Ruan, A periodic Ross–Macdonald model in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3133-3145.  doi: 10.3934/dcdsb.2014.19.3133. [19] D. Gao and S. Ruan, A multipatch malaria model with logistic growth populations, SIAM J. Appl. Math., 72 (2012), 819-841.  doi: 10.1137/110850761. [20] D. Gao and S. Ruan, Malaria models with spatial effects, in Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases (eds. D. Chen, B. Moulin and J. Wu), John Wiley & Sons, (2014), 109–136. doi: 10.1002/9781118630013.ch6. [21] D. Gao, P. van den Driessche and C. Cosner, Habitat fragmentation promotes malaria persistence, J. Math. Biol., 79 (2019), 2255-2280.  doi: 10.1007/s00285-019-01428-2. [22] N. G. Gratz, Emerging and resurging vector-borne diseases, Annu. Rev. Entomol., 44 (1999), 51-75.  doi: 10.1146/annurev.ento.44.1.51. [23] M. G. Guzman and E. Harris, Dengue, Lancet, 385 (2015), 453-465.  doi: 10.1016/S0140-6736(14)60572-9. [24] G. Harrison Mosquitoes, Malaria and Man: a History of the Hostilities since 1880, John Murray, London, 1978. [25] G. Hasibeder and C. Dye, Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment, Theor. Popu. Biol., 33 (1988), 31-53.  doi: 10.1016/0040-5809(88)90003-2. [26] T. D. Hollingsworth, N. M. Ferguson and R. M. Anderson, Frequent travelers and rate of spread of epidemics, Emerg. Infect. Dis., 13 (2007), 1288-1294.  doi: 10.3201/eid1309.070081. [27] R. A. Horn and C. R. Johnson, Matrix Analysis, 2$^nd$ edition, Cambridge University Press, New York, 2013. [28] J. C. Koella and R. Antia, Epidemiological models for the spread of anti-malarial resistance, Malar. J., 2 (2003), 3. doi: 10.1186/1475-2875-2-3. [29] R. S. Lanciotti, J. T. Roehrig, V. Deubel, et al., Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States, Science, 286 (1999), 2333-2337. doi: 10.1126/science.286.5448.2333. [30] S. Lim, J. K. Lim and I. Yoon, An update on Zika virus in Asia, Infect. Chemother., 49 (2017), 91-100.  doi: 10.3947/ic.2017.49.2.91. [31] N. Losada, E. Alén, T. Domínguez and J. L. Nicolau, Travel frequency of seniors tourists, Tour. Manag., 53 (2016), 88-95.  doi: 10.1016/j.tourman.2015.09.013. [32] Y. Lou and X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish, Bull. Math. Biol., 73 (2011), 2384-2407.  doi: 10.1007/s11538-011-9628-6. [33] G. Macdonald, The Epidemiology and Control of Malaria, Oxford University Press, London, 1957. [34] S. Mandal, R. R. Sarkar and S. Sinha, Mathematical models of malaria–a review, Malar. J., 10 (2011), 202. doi: 10.1186/1475-2875-10-202. [35] P. Martens and L. Hall, Malaria on the move: human population movement and malaria transmission, Emerg. Infect. Dis., 6 (2000), 103-109.  doi: 10.3201/eid0602.000202. [36] P. E. Parham and E. Michael, Modeling the effects of weather and climate change on malaria transmission, Environ. Health Perspect., 118 (2010), 620-626.  doi: 10.1289/ehp.0901256. [37] G. R. Port, P. F. L. Boreham and J. H. Bryan, The relationship of host size to feeding by mosquitoes of the Anopheles gambiae Giles complex (Diptera: Culicidae), Bull. Entomol. Res., 70 (1980), 133-144.  doi: 10.1017/S0007485300009834. [38] R. C. Reiner, T. A. Perkins, C. M. Barker, et al., A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010, J. R. Soc. Interface, 10 (2013), 20120921. doi: 10.1098/rsif.2012.0921. [39] A. Robinson, A. O. Busula, M. A. Voets, et al., Plasmodium-associated changes in human odor attract mosquitoes, Proc. Natl. Acad. Sci. USA, 115 (2018), E4209–E4218. doi: 10.1073/pnas.1721610115. [40] R. Ross, The Prevention of Malaria, John Murray, London, 1911. [41] S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross–Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098-1114.  doi: 10.1007/s11538-007-9292-z. [42] H. L. Smith, Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems, Vol 41, Amer. Math. Soc., Providence, RI, 1995. [43] J. Sutcliffe, X. Ji and S. Yin, How many holes is too many? A prototype tool for estimating mosquito entry risk into damaged bed nets, Malar. J., 16 (2017), 304. doi: 10.1186/s12936-017-1951-4. [44] A. J. Tatem and D. L. Smith, International population movements and regional Plasmodium falciparum malaria elimination strategies, Proc. Natl. Acad. Sci. USA, 107 (2010), 12222-12227.  doi: 10.1073/pnas.1002971107. [45] S. Tilley and D. Houston, The gender turnaround: young women now travelling more than young men, J. Transp. Geogr., 54 (2016), 349-358.  doi: 10.1016/j.jtrangeo.2016.06.022. [46] U.S. Department of Transportation–Federal Highway Administration, Summary of Travel Trends: 2017 National Household Travel Survey, 2018. Available from: https://nhts.ornl.gov/assets/2017-nhts-summary-travel-trends.pdf. [47] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6. [48] P. F. M. Verdonschot and A. A. Besse-Lototskaya, Flight distance of mosquitoes (Culicidae): a metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands, Limnologica, 45 (2014), 69-79.  doi: 10.1016/j.limno.2013.11.002. [49] World Health Organization, Yellow Fever Situation Report, 2016. Available from: https://www.who.int/emergencies/yellow-fever/situation-reports/28-october-2016/en/. [50] World Health Organization, World Malaria Report 2018, 2018. Available from: http://www.who.int/malaria/publications/world-malaria-report-2018/en. [51] WorldAtlas, Countries that Travel the Most, 2019. Available from: https://www.worldatlas.com/articles/countries-whose-citizens-travel-the-most.html. [52] X.-Q. Zhao, Dynamical Systems in Population Biology, $2^nd$ edition, Springer-Verlag, New York, 2017. doi: 10.1007/978-3-319-56433-3. [53] X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Can. Appl. Math. Quart., 4 (1996), 421-444.
Flowchart of the mosquito-borne disease model in patch $i$
The contour plot of $\mathcal{R}_0-\hat{ \mathcal{R}}_0$ versus the relative travel rates $\tau_{12}$ and $\tau_{21}$
The contour plot of $\mathcal{R}_0$ versus the relative frequency change rates $\tau_1$ and $\tau_2$. (a) simultaneously decreases, (b) simultaneously increases, (c) increases in $\tau_1$ but decreases $\tau_2$, (d) non-monotonically varies with $\tau_1$ and decreases in $\tau_2$
Descriptions and ranges of parameters (time unit is day)
 Description Range $a_i$ mosquito biting rate 0.1–1 $b_i^u$ transmission probability from an infectious mosquito 0.01–0.8 to a susceptible unfrequent traveler per bite $b_i^f$ transmission probability from an infectious mosquito 0.01–0.8 to a susceptible frequent traveler per bite $c_i^u$ transmission probability from an infectious unfrequent 0.072–0.64 traveler to a susceptible mosquito per bite $c_i^f$ transmission probability from an infectious frequent 0.072–0.64 traveler to a susceptible mosquito per bite $\gamma_i^u$ recovery rate of infectious unfrequent humans 0.005–0.05 $\gamma_i^f$ recovery rate of infectious frequent humans 0.005–0.05 $\mu_i$ mosquito mortality rate 0.05–0.2 $\sigma_i$ relative HBR of frequent travelers to unfrequent travelers 0.2–5 $c_{ij}^f$ travel rate of frequent travelers from patches $j$ to $i$ 0.03–0.1 $\tau_{ij}$ relative travel rate of unfrequent travelers 0–0.4 to frequent travelers $c_{ij}^u$ travel rate of unfrequent travelers from patches $j$ to $i$ $c_{ij}^u=\tau_{ij}c_{ij}^f$ $d_{ij}$ travel rate of mosquitoes from patch $j$ to patch $i$ 0.001–0.03 $\phi_i^f$ change rate from frequent travelers to $2.7 \times 10^{-4}$ unfrequent travelers –$9 \times 10^{-4}$ $\tau_i$ relative change rate of unfrequent travelers 0.1–0.5 to frequent travelers $\phi_i^u$ change rate from unfrequent travelers to $\phi_i^u=\tau_i\phi_i^f$ frequent travelers $V/H$ ratio of mosquitoes to humans 1–10
 Description Range $a_i$ mosquito biting rate 0.1–1 $b_i^u$ transmission probability from an infectious mosquito 0.01–0.8 to a susceptible unfrequent traveler per bite $b_i^f$ transmission probability from an infectious mosquito 0.01–0.8 to a susceptible frequent traveler per bite $c_i^u$ transmission probability from an infectious unfrequent 0.072–0.64 traveler to a susceptible mosquito per bite $c_i^f$ transmission probability from an infectious frequent 0.072–0.64 traveler to a susceptible mosquito per bite $\gamma_i^u$ recovery rate of infectious unfrequent humans 0.005–0.05 $\gamma_i^f$ recovery rate of infectious frequent humans 0.005–0.05 $\mu_i$ mosquito mortality rate 0.05–0.2 $\sigma_i$ relative HBR of frequent travelers to unfrequent travelers 0.2–5 $c_{ij}^f$ travel rate of frequent travelers from patches $j$ to $i$ 0.03–0.1 $\tau_{ij}$ relative travel rate of unfrequent travelers 0–0.4 to frequent travelers $c_{ij}^u$ travel rate of unfrequent travelers from patches $j$ to $i$ $c_{ij}^u=\tau_{ij}c_{ij}^f$ $d_{ij}$ travel rate of mosquitoes from patch $j$ to patch $i$ 0.001–0.03 $\phi_i^f$ change rate from frequent travelers to $2.7 \times 10^{-4}$ unfrequent travelers –$9 \times 10^{-4}$ $\tau_i$ relative change rate of unfrequent travelers 0.1–0.5 to frequent travelers $\phi_i^u$ change rate from unfrequent travelers to $\phi_i^u=\tau_i\phi_i^f$ frequent travelers $V/H$ ratio of mosquitoes to humans 1–10
Parameter settings for Figure 3
 Symbol Figure 3a Figure 3b Figure 3c Figure 3d $a_1$ 0.438 0.380 0.535 0.161 $a_2$ 0.402 0.100 0.147 0.051 $b_1$ 0.548 0.686 0.373 0.656 $b_2$ 0.642 0.159 0.178 0.716 $c_1$ 0.398 0.324 0.608 0.586 $c_2$ 0.636 0.085 0.618 0.403 $\gamma_1$ 0.049 0.044 0.044 0.009 $\gamma_2$ 0.026 0.029 0.014 0.020 $\mu_1$ 0.135 0.066 0.094 0.053 $\mu_2$ 0.165 0.194 0.174 0.103 $\sigma_1$ 1 1 1 1 $\sigma_2$ 1 1 1 1 $c_{12}^u$ 0.021 0.006 0.0128 0.0028 $c_{21}^u$ 0.018 0.002 0.0182 0.0005 $c_{12}^f$ 0.094 0.060 0.0534 0.0550 $c_{21}^f$ 0.092 0.076 0.0943 0.0497 $d_{12}$ 0 0 0 0 $d_{21}$ 0 0 0 0 $\phi_1^u$ 7.73 $\times 10^{-5}$ 2.80$\times 10^{-4}$ 1.40$\times 10^{-4}$ 1.50 $\times 10^{-4}$ $\phi_2^u$ 5.11$\times 10^{-5}$ 3.46$\times 10^{-4}$ 2.10$\times 10^{-4}$ 1.50$\times 10^{-4}$ $\phi_1^f$ 7.16 $\times 10^{-4}$ 7.58$\times 10^{-4}$ 5.35$\times 10^{-4}$ 4.82$\times 10^{-4}$ $\phi_2^f$ 3.24$\times 10^{-4}$ 7.62$\times 10^{-4}$ 4.67$\times 10^{-4}$ 5.55$\times 10^{-4}$ $V_1$ 5859 23633 6065 13838 $V_2$ 18790 29698 17129 19918 $H$ 10000 10000 10000 10000
 Symbol Figure 3a Figure 3b Figure 3c Figure 3d $a_1$ 0.438 0.380 0.535 0.161 $a_2$ 0.402 0.100 0.147 0.051 $b_1$ 0.548 0.686 0.373 0.656 $b_2$ 0.642 0.159 0.178 0.716 $c_1$ 0.398 0.324 0.608 0.586 $c_2$ 0.636 0.085 0.618 0.403 $\gamma_1$ 0.049 0.044 0.044 0.009 $\gamma_2$ 0.026 0.029 0.014 0.020 $\mu_1$ 0.135 0.066 0.094 0.053 $\mu_2$ 0.165 0.194 0.174 0.103 $\sigma_1$ 1 1 1 1 $\sigma_2$ 1 1 1 1 $c_{12}^u$ 0.021 0.006 0.0128 0.0028 $c_{21}^u$ 0.018 0.002 0.0182 0.0005 $c_{12}^f$ 0.094 0.060 0.0534 0.0550 $c_{21}^f$ 0.092 0.076 0.0943 0.0497 $d_{12}$ 0 0 0 0 $d_{21}$ 0 0 0 0 $\phi_1^u$ 7.73 $\times 10^{-5}$ 2.80$\times 10^{-4}$ 1.40$\times 10^{-4}$ 1.50 $\times 10^{-4}$ $\phi_2^u$ 5.11$\times 10^{-5}$ 3.46$\times 10^{-4}$ 2.10$\times 10^{-4}$ 1.50$\times 10^{-4}$ $\phi_1^f$ 7.16 $\times 10^{-4}$ 7.58$\times 10^{-4}$ 5.35$\times 10^{-4}$ 4.82$\times 10^{-4}$ $\phi_2^f$ 3.24$\times 10^{-4}$ 7.62$\times 10^{-4}$ 4.67$\times 10^{-4}$ 5.55$\times 10^{-4}$ $V_1$ 5859 23633 6065 13838 $V_2$ 18790 29698 17129 19918 $H$ 10000 10000 10000 10000
 [1] Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567 [2] Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1447-1469. doi: 10.3934/dcdsb.2021097 [3] Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 [4] Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 [5] Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 [6] Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170 [7] Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463 [8] Theodore E. Galanthay. Mathematical study of the effects of travel costs on optimal dispersal in a two-patch model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1625-1638. doi: 10.3934/dcdsb.2015.20.1625 [9] Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 [10] C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008 [11] Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170 [12] Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049 [13] Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217 [14] Shigui Ruan, Wendi Wang, Simon A. Levin. The effect of global travel on the spread of SARS. Mathematical Biosciences & Engineering, 2006, 3 (1) : 205-218. doi: 10.3934/mbe.2006.3.205 [15] Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166 [16] Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053 [17] Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations and Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015 [18] Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239 [19] Sabri Bensid, Jesús Ildefonso Díaz. On the exact number of monotone solutions of a simplified Budyko climate model and their different stability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1033-1047. doi: 10.3934/dcdsb.2019005 [20] Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6173-6184. doi: 10.3934/dcdsb.2021012

2020 Impact Factor: 1.327