[1]
|
J. Alegre, S. Mateo and L. Pou, Participation in tourism consumption and the intensity of participation: an analysis of their socio-demographic and economic determinants, Tourism Econo., 15 (2009), 531-546.
doi: 10.5367/000000009789036521.
|
[2]
|
M. Anjomruz, M. A. Oshaghi, A. A. Pourfatollah, et al., Preferential feeding success of laboratory reared Anopheles stephensi mosquitoes according to ABO blood group status, Acta Trop., 140 (2014), 118-123.
doi: 10.1016/j.actatropica.2014.08.012.
|
[3]
|
J. L. Aron, Mathematical modelling of immunity to malaria, Math. Biosci., 90 (1988), 385-396.
doi: 10.1016/0025-5564(88)90076-4.
|
[4]
|
J. L. Aron and R. M. May, The population dynamics of malaria, in The Population Dynamics of Infectious Diseases: Theory and Applications (eds. R. M. Anderson), Springer, (1982), 139–179.
doi: 10.1007/978-1-4899-2901-3.
|
[5]
|
P. Auger, E. Kouokam, G. Sallet, M. Tchuente and B. Tsanou, The Ross–Macdonald model in a patchy environment, Math. Biosci., 216 (2008), 123-131.
doi: 10.1016/j.mbs.2008.08.010.
|
[6]
|
C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. E. Axelrod, M. Kimmel and M. Langlais), Wuerz, Winnipeg, Canada, (1995), 33–50.
|
[7]
|
N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.
doi: 10.1007/s11538-008-9299-0.
|
[8]
|
C. Cosner, Models for the effects of host movement in vector-borne disease systems, Math. Biosci., 270 (2015), 192-197.
doi: 10.1016/j.mbs.2015.06.015.
|
[9]
|
C. Cosner, J. C. Beier, R. S. Cantrell, D. Impoinvil, L. Kapitanski, M. D. Potts, A. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol., 258 (2009), 550-560.
doi: 10.1016/j.jtbi.2009.02.016.
|
[10]
|
J. M. Denstadli, Analysing air travel: a comparison of different survey methods and data collection procedures, J. Travel Res., 39 (2000), 4-10.
doi: 10.1177/004728750003900102.
|
[11]
|
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324.
|
[12]
|
C. Dye and G. Hasibeder, Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others, Trans. R. Soc. Trop. Med. Hyg., 80 (1986), 69-77.
doi: 10.1016/0035-9203(86)90199-9.
|
[13]
|
J. L. Gallup and J. D. Sachs, The economic burden of malaria, Am. J. Trop. Med. Hyg., 64 (2001), 85-96.
doi: 10.4269/ajtmh.2001.64.85.
|
[14]
|
D. Gao, Travel frequency and infectious diseases, SIAM J. Appl. Math., 79 (2019), 1581-1606.
doi: 10.1137/18M1211957.
|
[15]
|
D. Gao, A. Amza, B. Nassirou, B. Kadri, N. Sippl-Swezey, F. Liu, S. F. Ackley, T. M. Lietman and T. C. Porco, Optimal seasonal timing of oral azithromycin for malaria, Am. J. Trop. Med. Hyg., 91 (2014), 936-942.
doi: 10.4269/ajtmh.13-0474.
|
[16]
|
D. Gao and C. Dong, Fast diffusion inhibits disease outbreaks, Proc. Amer. Math. Soc., 148 (2020), 1709-1722.
doi: 10.1090/proc/14868.
|
[17]
|
D. Gao, Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell and S. Ruan, Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis, Sci. Rep., 6 (2016), 28070.
doi: 10.1038/srep28070.
|
[18]
|
D. Gao, Y. Lou and S. Ruan, A periodic Ross–Macdonald model in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3133-3145.
doi: 10.3934/dcdsb.2014.19.3133.
|
[19]
|
D. Gao and S. Ruan, A multipatch malaria model with logistic growth populations, SIAM J. Appl. Math., 72 (2012), 819-841.
doi: 10.1137/110850761.
|
[20]
|
D. Gao and S. Ruan, Malaria models with spatial effects, in Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases (eds. D. Chen, B. Moulin and J. Wu), John Wiley & Sons, (2014), 109–136.
doi: 10.1002/9781118630013.ch6.
|
[21]
|
D. Gao, P. van den Driessche and C. Cosner, Habitat fragmentation promotes malaria persistence, J. Math. Biol., 79 (2019), 2255-2280.
doi: 10.1007/s00285-019-01428-2.
|
[22]
|
N. G. Gratz, Emerging and resurging vector-borne diseases, Annu. Rev. Entomol., 44 (1999), 51-75.
doi: 10.1146/annurev.ento.44.1.51.
|
[23]
|
M. G. Guzman and E. Harris, Dengue, Lancet, 385 (2015), 453-465.
doi: 10.1016/S0140-6736(14)60572-9.
|
[24]
|
G. Harrison Mosquitoes, Malaria and Man: a History of the Hostilities since 1880, John Murray, London, 1978.
|
[25]
|
G. Hasibeder and C. Dye, Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment, Theor. Popu. Biol., 33 (1988), 31-53.
doi: 10.1016/0040-5809(88)90003-2.
|
[26]
|
T. D. Hollingsworth, N. M. Ferguson and R. M. Anderson, Frequent travelers and rate of spread of epidemics, Emerg. Infect. Dis., 13 (2007), 1288-1294.
doi: 10.3201/eid1309.070081.
|
[27]
|
R. A. Horn and C. R. Johnson, Matrix Analysis, 2$^nd$ edition, Cambridge University Press, New York, 2013.
|
[28]
|
J. C. Koella and R. Antia, Epidemiological models for the spread of anti-malarial resistance, Malar. J., 2 (2003), 3.
doi: 10.1186/1475-2875-2-3.
|
[29]
|
R. S. Lanciotti, J. T. Roehrig, V. Deubel, et al., Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States, Science, 286 (1999), 2333-2337.
doi: 10.1126/science.286.5448.2333.
|
[30]
|
S. Lim, J. K. Lim and I. Yoon, An update on Zika virus in Asia, Infect. Chemother., 49 (2017), 91-100.
doi: 10.3947/ic.2017.49.2.91.
|
[31]
|
N. Losada, E. Alén, T. Domínguez and J. L. Nicolau, Travel frequency of seniors tourists, Tour. Manag., 53 (2016), 88-95.
doi: 10.1016/j.tourman.2015.09.013.
|
[32]
|
Y. Lou and X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish, Bull. Math. Biol., 73 (2011), 2384-2407.
doi: 10.1007/s11538-011-9628-6.
|
[33]
|
G. Macdonald, The Epidemiology and Control of Malaria, Oxford University Press, London, 1957.
|
[34]
|
S. Mandal, R. R. Sarkar and S. Sinha, Mathematical models of malaria–a review, Malar. J., 10 (2011), 202.
doi: 10.1186/1475-2875-10-202.
|
[35]
|
P. Martens and L. Hall, Malaria on the move: human population movement and malaria transmission, Emerg. Infect. Dis., 6 (2000), 103-109.
doi: 10.3201/eid0602.000202.
|
[36]
|
P. E. Parham and E. Michael, Modeling the effects of weather and climate change on malaria transmission, Environ. Health Perspect., 118 (2010), 620-626.
doi: 10.1289/ehp.0901256.
|
[37]
|
G. R. Port, P. F. L. Boreham and J. H. Bryan, The relationship of host size to feeding by mosquitoes of the Anopheles gambiae Giles complex (Diptera: Culicidae), Bull. Entomol. Res., 70 (1980), 133-144.
doi: 10.1017/S0007485300009834.
|
[38]
|
R. C. Reiner, T. A. Perkins, C. M. Barker, et al., A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010, J. R. Soc. Interface, 10 (2013), 20120921.
doi: 10.1098/rsif.2012.0921.
|
[39]
|
A. Robinson, A. O. Busula, M. A. Voets, et al., Plasmodium-associated changes in human odor attract mosquitoes, Proc. Natl. Acad. Sci. USA, 115 (2018), E4209–E4218.
doi: 10.1073/pnas.1721610115.
|
[40]
|
R. Ross, The Prevention of Malaria, John Murray, London, 1911.
|
[41]
|
S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross–Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098-1114.
doi: 10.1007/s11538-007-9292-z.
|
[42]
|
H. L. Smith, Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems, Vol 41, Amer. Math. Soc., Providence, RI, 1995.
|
[43]
|
J. Sutcliffe, X. Ji and S. Yin, How many holes is too many? A prototype tool for estimating mosquito entry risk into damaged bed nets, Malar. J., 16 (2017), 304.
doi: 10.1186/s12936-017-1951-4.
|
[44]
|
A. J. Tatem and D. L. Smith, International population movements and regional Plasmodium falciparum malaria elimination strategies, Proc. Natl. Acad. Sci. USA, 107 (2010), 12222-12227.
doi: 10.1073/pnas.1002971107.
|
[45]
|
S. Tilley and D. Houston, The gender turnaround: young women now travelling more than young men, J. Transp. Geogr., 54 (2016), 349-358.
doi: 10.1016/j.jtrangeo.2016.06.022.
|
[46]
|
U.S. Department of Transportation–Federal Highway Administration, Summary of Travel Trends: 2017 National Household Travel Survey, 2018. Available from: https://nhts.ornl.gov/assets/2017-nhts-summary-travel-trends.pdf.
|
[47]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[48]
|
P. F. M. Verdonschot and A. A. Besse-Lototskaya, Flight distance of mosquitoes (Culicidae): a metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands, Limnologica, 45 (2014), 69-79.
doi: 10.1016/j.limno.2013.11.002.
|
[49]
|
World Health Organization, Yellow Fever Situation Report, 2016. Available from: https://www.who.int/emergencies/yellow-fever/situation-reports/28-october-2016/en/.
|
[50]
|
World Health Organization, World Malaria Report 2018, 2018. Available from: http://www.who.int/malaria/publications/world-malaria-report-2018/en.
|
[51]
|
WorldAtlas, Countries that Travel the Most, 2019. Available from: https://www.worldatlas.com/articles/countries-whose-citizens-travel-the-most.html.
|
[52]
|
X.-Q. Zhao, Dynamical Systems in Population Biology, $2^nd$ edition, Springer-Verlag, New York, 2017.
doi: 10.1007/978-3-319-56433-3.
|
[53]
|
X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Can. Appl. Math. Quart., 4 (1996), 421-444.
|