doi: 10.3934/dcdsb.2020131

A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games

1. 

Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, United States

2. 

Department of Civil Engineering and Engineering Mechanics and Data Science Institute, Columbia University, New York, NY 10027, United States

3. 

Department of Applied Physics and Applied Mathematics and Data Science Institute, Columbia University, New York, NY 10027, United States

4. 

Department of Computer Science, Columbia University, New York, NY 10027, United States

* Corresponding author: Xuan Di

Received  November 2019 Revised  January 2020 Published  April 2020

This paper proposes an efficient computational framework for longitudinal velocity control of a large number of autonomous vehicles (AVs) and develops a traffic flow theory for AVs. Instead of hypothesizing explicitly how AVs drive, our goal is to design future AVs as rational, utility-optimizing agents that continuously select optimal velocity over a period of planning horizon. With a large number of interacting AVs, this design problem can become computationally intractable. This paper aims to tackle such a challenge by employing mean field approximation and deriving a mean field game (MFG) as the limiting differential game with an infinite number of agents. The proposed micro-macro model allows one to define individuals on a microscopic level as utility-optimizing agents while translating rich microscopic behaviors to macroscopic models. Different from existing studies on the application of MFG to traffic flow models, the present study offers a systematic framework to apply MFG to autonomous vehicle velocity control. The MFG-based AV controller is shown to mitigate traffic jam faster than the LWR-based controller. MFG also embodies classical traffic flow models with behavioral interpretation, thereby providing a new traffic flow theory for AVs.

Citation: Kuang Huang, Xuan Di, Qiang Du, Xi Chen. A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020131
References:
[1]

Y. AchdouF. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM Journal on Control and Optimization, 50 (2012), 77-109.  doi: 10.1137/100790069.  Google Scholar

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM Journal on Numerical Analysis, 48 (2010), 1136-1162.  doi: 10.1137/090758477.  Google Scholar

[3]

Y. Achdou and V. Perez, Iterative strategies for solving linearized discrete mean field games systems, Netw. Heterog. Media, 7 (2012), 197-217.  doi: 10.3934/nhm.2012.7.197.  Google Scholar

[4]

O. D. AltanG. WuM. J. BarthK. Boriboonsomsin and J. A. Stark, Glidepath: Eco-friendly automated approach and departure at signalized intersections, IEEE Transactions on Intelligent Vehicles, 2 (2017), 266-277.  doi: 10.1109/TIV.2017.2767289.  Google Scholar

[5]

D. M. Ambrose, Existence theory for non-separable mean field games in sobolev spaces, preprint, arXiv: 1807.02223. Google Scholar

[6]

S. Arefizadeh and A. Talebpour, A platooning strategy for automated vehicles in the presence of speed limit fluctuations, Transportation Research Record, 2672 (2018), 154-161.  doi: 10.1177/0361198118784176.  Google Scholar

[7]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938.  doi: 10.1137/S0036139997332099.  Google Scholar

[8]

M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Physical Review E, 51 (1995), 1035. Google Scholar

[9]

M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[10]

T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, Classics in Applied Mathematics, 23. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.  Google Scholar

[11]

J.-D. Benamou and G. Carlier, Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations, Journal of Optimization Theory and Applications, 167 (2015), 1-26.  doi: 10.1007/s10957-015-0725-9.  Google Scholar

[12]

J.-D. Benamou, G. Carlier and F. Santambrogio, Variational mean field games, Active Particles, Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 141–171. doi: doi.  Google Scholar

[13]

M. Brackstone and M. McDonald, Car-following: A historical review, Transportation Research Part F: Traffic Psychology and Behaviour, 2 (1999), 181-196.  doi: 10.1016/S1369-8478(00)00005-X.  Google Scholar

[14]

M. Burger, M. Di Francesco, P. A. Markowich and M.-T. Wolfram, Mean field games with nonlinear mobilities in pedestrian dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1311–1333, arXiv: 1304.5201. doi: 10.3934/dcdsb.2014.19.1311.  Google Scholar

[15]

P. Cardaliaguet, Notes on Mean Field Games, Technical report, 2010. Google Scholar

[16]

P. Cardaliaguet, Weak solutions for first order mean field games with local coupling, Analysis and Geometry in Control Theory and Its Applications, Springer INdAM Ser., Springer, Cham, 11 (2015), 111–158. doi: 10.1007/978-3-319-06917-3_5.  Google Scholar

[17]

D. J. ChenJ. LavalZ. D. Zheng and S. Ahn, A behavioral car-following model that captures traffic oscillations, Transportation Research Part B: Methodological, 46 (2012), 744-761.  doi: 10.1016/j.trb.2012.01.009.  Google Scholar

[18]

G. Chevalier, J. Le Ny and R. Malhamé, A micro-macro traffic model based on mean-field games, 2015 American Control Conference (ACC), IEEE, (2015), 1983–1988. doi: 10.1109/ACC.2015.7171024.  Google Scholar

[19]

Y. T. Chow, W. C. Li, S. Osher and W. T. Yin, Algorithm for Hamilton-Jacobi equations in density space via a generalized Hopf formula, J. Sci. Comput., 80 (2019), 1195–1239, arXiv: 1805.01636. doi: 10.1007/s10915-019-00972-9.  Google Scholar

[20]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Semin. Mat. Univ. Padova, 131 (2014), 217-235.  doi: 10.4171/RSMUP/131-13.  Google Scholar

[21]

R. CouilletS. M. PerlazaH. Tembine and M. Debbah, Electrical vehicles in the smart grid: A mean field game analysis, IEEE Journal on Selected Areas in Communications, 30 (2012), 1086-1096.  doi: 10.1109/JSAC.2012.120707.  Google Scholar

[22]

S. CuiB. SeiboldR. Stern and D. B. Work, Stabilizing traffic flow via a single autonomous vehicle: Possibilities and limitations, Intelligent Vehicles Symposium, 2017 IEEE, 4 (2017), 1336-1341.  doi: 10.1109/IVS.2017.7995897.  Google Scholar

[23]

C. F. Daganzo, A variational formulation of kinematic waves: Basic theory and complex boundary conditions, Transportation Research Part B: Methodological, 39 (2005), 187-196.  doi: 10.1016/j.trb.2004.04.003.  Google Scholar

[24]

C. F. Daganzo, In traffic flow, cellular automata = kinematic waves, Transportation Research Part B: Methodological, 40 (2006), 396-403.  doi: 10.1016/j.trb.2005.05.004.  Google Scholar

[25]

C. F. Daganzo, On the variational theory of traffic flow: Well-posedness, duality and applications, Networks & Heterogeneous Media, 1 (2006), 601-619.  doi: 10.3934/nhm.2006.1.601.  Google Scholar

[26]

S. Darbha and K. R. Rajagopal, Intelligent cruise control systems and traffic flow stability, Transportation Research Part C: Emerging Technologies, 7 (1999), 329-352.  doi: 10.1016/S0968-090X(99)00024-8.  Google Scholar

[27]

P. DegondJ.-G. Liu and C. Ringhofer, Large-scale dynamics of mean-field games driven by local nash equilibria, Journal of Nonlinear Science, 24 (2014), 93-115.  doi: 10.1007/s00332-013-9185-2.  Google Scholar

[28]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for Rational Mechanics and Analysis, 217 (2015), 831-871.  doi: 10.1007/s00205-015-0843-4.  Google Scholar

[29]

B. Djehiche, A. Tcheukam and H. Tembine, Mean-field-type games in engineering, preprint, arXiv: 1605.03281. doi: 10.3934/ElectrEng.2017.1.18.  Google Scholar

[30]

A. Dreves and M. Gerdts, A generalized Nash equilibrium approach for optimal control problems of autonomous cars, Optimal Control Applications and Methods, 39 (2018), 326-342.  doi: 10.1002/oca.2348.  Google Scholar

[31]

P. G. Gipps, A behavioural car-following model for computer simulation, Transportation Research Part B: Methodological, 15 (1981), 105-111.  doi: 10.1016/0191-2615(81)90037-0.  Google Scholar

[32]

G. H. Golub and C. F. Van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013.  Google Scholar

[33]

S. Gong and L. L. Du, Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles, Transportation Research part B: Methodological, 116 (2018), 25-61.  doi: 10.1016/j.trb.2018.07.005.  Google Scholar

[34]

S. Y. GongJ. L. Shen and L. L. Du, Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon, Transportation Research Part B: Methodological, 94 (2016), 314-334.  doi: 10.1016/j.trb.2016.09.016.  Google Scholar

[35]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., Springer, Berlin, 2003 (2011), 205–266. doi: 10.1007/978-3-642-14660-2_3.  Google Scholar

[36]

W. Hackbusch, Multi-Grid Methods and Applications, Springer Science & Business Media, 2013. Google Scholar

[37]

P. HaoG. WuK. Boriboonsomsin and M. J. Barth, Eco-approach and departure (ead) application for actuated signals in real-world traffic, IEEE Transactions on Intelligent Transportation Systems, 20 (2018), 30-40.  doi: 10.1109/TITS.2018.2794509.  Google Scholar

[38]

D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models, The European Physical Journal B, 69 (2009), 539-548.  doi: 10.1007/978-3-642-32160-3_3.  Google Scholar

[39]

L. N. Hoang, The new big fish called mean-field game theory, (2014), http://www.science4all.org/article/mean-field-games/, [Online; accessed 4.5.2020]. Google Scholar

[40]

K. Huang, X. Di, Q. Du and X. Chen, Stabilizing traffic via autonomous vehicles: A continuum mean field game approach, in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, 2019, 3269–3274. Google Scholar

[41]

K. HuangX. DiQ. Du and X. Chen, Scalable traffic stability analysis in mixed-autonomy using continuum models, Transportation Research Part C: Emerging Technologies, 111 (2020), 616-630.   Google Scholar

[42]

M. Y. HuangR. P. Malhamé and P. E. Caines, Large population stochastic dynamic games: Closed-loop Mckean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), 221-251.  doi: 10.4310/CIS.2006.v6.n3.a5.  Google Scholar

[43]

Z. Y. HuangH. LamD. J. LeBlanc and D. Zhao, Accelerated evaluation of automated vehicles using piecewise mixture models, IEEE Transactions on Intelligent Transportation Systems, 19 (2018), 2845-2855.  doi: 10.1109/TITS.2017.2766172.  Google Scholar

[44]

M.-I. M. ImprialouM. QuddusD. E. Pitfield and D. Lord, Re-visiting crash-speed relationships: A new perspective in crash modelling, Accident Analysis & Prevention, 86 (2016), 173-185.  doi: 10.1016/j.aap.2015.10.001.  Google Scholar

[45]

P. A. Ioannou and C.-C. Chien, Autonomous intelligent cruise control, IEEE Transactions on Vehicular technology, 42 (1993), 657-672.  doi: 10.1109/25.260745.  Google Scholar

[46]

I. G. JinS. S. AvedisovC. R. HeW. B. QinM. Sadeghpour and G. Orosz, Experimental validation of connected automated vehicle design among human-driven vehicles, Transportation Research Part C: Emerging Technologies, 91 (2018), 335-352.   Google Scholar

[47]

I. G. Jin and G. Orosz, Dynamics of connected vehicle systems with delayed acceleration feedback, Transportation Research Part C: Emerging Technologies, 46 (2014), 46-64.   Google Scholar

[48]

I. G. Jin and G. Orosz, Connected cruise control among human-driven vehicles: Experiment-based parameter estimation and optimal control design, Transportation Research Part C: Emerging Technologies, 95 (2018), 445-459.   Google Scholar

[49]

W.-L. Jin, On the equivalence between continuum and car-following models of traffic flow, Transportation Research Part B: Methodological, 93 (2016), 543-559.  doi: 10.1016/j.trb.2016.08.007.  Google Scholar

[50]

W.-L. Jin and H. M. Zhang, On the distribution schemes for determining flows through a merge, Transportation Research Part B: Methodological, 37 (2003), 521-540.  doi: 10.1016/S0191-2615(02)00026-7.  Google Scholar

[51]

P. KachrooS. Agarwal and S. Sastry, Inverse problem for non-viscous mean field control: Example from traffic, IEEE Transactions on Automatic Control, 61 (2016), 3412-3421.  doi: 10.1109/TAC.2015.2511929.  Google Scholar

[52]

A. KestingM. Treiber and D. Helbing, Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 4585-4605.  doi: 10.1098/rsta.2010.0084.  Google Scholar

[53]

A. KestingM. TreiberM. Schönhof and D. Helbing, Adaptive cruise control design for active congestion avoidance, Transportation Research Part C: Emerging Technologies, 16 (2008), 668-683.  doi: 10.1016/j.trc.2007.12.004.  Google Scholar

[54]

C. Kim and R. Langari, Game theory based autonomous vehicles operation, International Journal of Vehicle Design, 65 (2014), 360-383.  doi: 10.1504/IJVD.2014.063832.  Google Scholar

[55]

A. LachapelleJ. Salomon and G. Turinici, Computation of mean field equilibria in economics, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567-588.  doi: 10.1142/S0218202510004349.  Google Scholar

[56]

A. Lachapelle and M.-T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds, Transportation Research part B: Methodological, 45 (2011), 1572-1589.  doi: 10.1016/j.trb.2011.07.011.  Google Scholar

[57]

J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[58]

J. A. Laval and L. Leclercq, The Hamilton-Jacobi partial differential equation and the three representations of traffic flow, Transportation Research Part B: Methodological, 52 (2013), 17-30.  doi: 10.1016/j.trb.2013.02.008.  Google Scholar

[59]

D. A. Lazar, R. Pedarsani, K. Chandrasekher and D. Sadigh, Maximizing road capacity using cars that influence people, in 2018 IEEE Conference on Decision and Control (CDC) Google Scholar

[60]

J.-P. Lebacque, First-order macroscopic traffic flow models: Intersection modeling, network modeling, Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic TheoryUniversity of Maryland, College Park, (2005). Google Scholar

[61]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.  Google Scholar

[62]

M. W. Levin and S. D. Boyles, A multiclass cell transmission model for shared human and autonomous vehicle roads, Transportation Research Part C: Emerging Technologies, 62 (2016), 103-116.  doi: 10.1016/j.trc.2015.10.005.  Google Scholar

[63]

N. LiD. W. OylerM. ZhangY. YildizI. Kolmanovsky and A. R. Girard, Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems, IEEE Transactions on Control Systems Technology, 26 (2018), 1782-1797.  doi: 10.1109/TCST.2017.2723574.  Google Scholar

[64]

X. P. LiA. GhiasiZ. G. Xu and X. B. Qu, A piecewise trajectory optimization model for connected automated vehicles: Exact optimization algorithm and queue propagation analysis, Transportation Research Part B: Methodological, 118 (2018), 429-456.  doi: 10.1016/j.trb.2018.11.002.  Google Scholar

[65]

Y. LiC. TangS. Peeta and Y. Wang, Nonlinear consensus-based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays, IEEE Transactions on Intelligent Transportation Systems, 20 (2019), 2209-2219.  doi: 10.1109/TITS.2018.2865546.  Google Scholar

[66]

M. J. Lighthill, On sound generated aerodynamically. I. General theory, Proc. R. Soc. Lond. A, 211 (1952), 564-587.  doi: 10.1098/rspa.1952.0060.  Google Scholar

[67]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[68]

C. L. Liu and M. Tomizuka, Safe exploration: Addressing various uncertainty levels in human robot interactions, 2015 American Control Conference (ACC), IEEE, (2015), 465–470. doi: 10.1109/ACC.2015.7170779.  Google Scholar

[69]

C. L. Liu and M. Tomizuka, Enabling safe freeway driving for automated vehicles, American Control Conference (ACC), IEEE, (2016), 3461–3467. doi: 10.1109/ACC.2016.7525449.  Google Scholar

[70]

J. Q. MaX. P. LiS. E. ShladoverH. A. RakhaX.-Y. LuR. Jagannathan and D. J. Dailey, Freeway speed harmonization, IEEE Trans. Intelligent Vehicles, 1 (2016), 78-89.  doi: 10.1109/TIV.2016.2551540.  Google Scholar

[71]

A. A. MalikopoulosS. HongB. B. ParkJ. Lee and S. Ryu, Optimal control for speed harmonization of automated vehicles, IEEE Transactions on Intelligent Transportation Systems, 20 (2019), 2405-2417.  doi: 10.1109/TITS.2018.2865561.  Google Scholar

[72]

V. Milanés and S. E. Shladover, Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data, Transportation Research Part C: Emerging Technologies, 48 (2014), 285-300.   Google Scholar

[73]

V. MilanésS. E. ShladoverJ. SpringC. NowakowskiH. Kawazoe and M. Nakamura, Cooperative adaptive cruise control in real traffic situations, IEEE Transactions on Intelligent Transportation Systems, 15 (2014), 296-305.   Google Scholar

[74]

G. J. NausR. P. VugtsJ. PloegM. J. van de Molengraft and M. Steinbuch, String-stable CACC design and experimental validation: A frequency-domain approach, IEEE Transactions on Vehicular Technology, 59 (2010), 4268-4279.  doi: 10.1109/TVT.2010.2076320.  Google Scholar

[75]

G. F. Newell, A simplified theory of kinematic waves in highway traffic, Part Ⅰ: General theory, Transportation Research Part B: Methodological, 27 (1993), 281-287.  doi: 10.1016/0191-2615(93)90038-C.  Google Scholar

[76]

G. F. Newell, Nonlinear effects in the dynamics of car following, Operations Research, 9 (1961), 209-229.  doi: 10.1287/opre.9.2.209.  Google Scholar

[77]

D. NgoduyS. P. Hoogendoorn and R. Liu, Continuum modeling of cooperative traffic flow dynamics, Physica A: Statistical Mechanics and its Applications, 388 (2009), 2705-2716.  doi: 10.1016/j.physa.2009.02.040.  Google Scholar

[78]

G. Orosz, R. E. Wilson and G. Stépán, Traffic jams: Dynamics and control, (2010). Google Scholar

[79]

H. J. Payne, Model of freeway traffic and control, Mathematical Model of Public System, 51–61. Google Scholar

[80]

J. Ploeg, B. T. Scheepers, E. Van Nunen, N. Van de Wouw and H. Nijmeijer, Design and experimental evaluation of cooperative adaptive cruise control, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), (2011), 260–265. doi: 10.1109/ITSC.2011.6082981.  Google Scholar

[81]

K. N. Porfyri, I. K. Nikolos, A. I. Delis and M. Papageorgiou, Stability analysis of a macroscopic traffic flow model for adaptive cruise control systems, ASME 2015 International Mechanical Engineering Congress and Exposition, (2015), V012T15A002. doi: 10.1115/IMECE2015-50977.  Google Scholar

[82]

W. B. Qin and G. Orosz, Digital effects and delays in connected vehicles: Linear stability and simulations, ASME 2013 Dynamic Systems and Control Conference, (2013), V002T30A001. doi: 10.1115/DSCC2013-3830.  Google Scholar

[83]

W. B. Qin and G. Orosz, Scalable stability analysis on large connected vehicle systems subject to stochastic communication delays, Transportation Research Part C: Emerging Technologies, 83 (2017), 39-60.  doi: 10.1016/j.trc.2017.07.005.  Google Scholar

[84]

R. Rajamani and S. E. Shladover, An experimental comparative study of autonomous and co-operative vehicle-follower control systems, Transportation Research Part C: Emerging Technologies, 9 (2001), 15-31.  doi: 10.1016/S0968-090X(00)00021-8.  Google Scholar

[85]

P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[86]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28 Princeton University Press, Princeton, N.J., 1970. doi: doi.  Google Scholar

[87]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579-591.  doi: 10.3934/dcdss.2014.7.579.  Google Scholar

[88]

Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), 856-869.  doi: 10.1137/0907058.  Google Scholar

[89]

D. Sadigh, S. Sastry, S. A. Seshia and A. D. Dragan, Planning for autonomous cars that leverage effects on human actions, Robotics: Science and Systems, (2016). doi: 10.15607/RSS.2016.XII.029.  Google Scholar

[90]

W. J. Schakel, B. Van Arem and B. D. Netten, Effects of cooperative adaptive cruise control on traffic flow stability, Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, (2010), 759–764. doi: 10.1109/ITSC.2010.5625133.  Google Scholar

[91]

B. Seibold, M. R. Flynn, A. R. Kasimov and R. R. Rosales, Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models, Netw. Heterog. Media, 8 (2013), 745–772, arXiv: 1204.5510. doi: 10.3934/nhm.2013.8.745.  Google Scholar

[92]

R. W. Shephard and R. Färe, The law of diminishing returns, Production Theory, Lecture Notes in Econom. and Math. Systems, Springer, Berlin, 99 (1974), 287–318.  Google Scholar

[93]

F. Siebel and W. Mauser, On the fundamental diagram of traffic flow, SIAM Journal on Applied Mathematics, 66 (2006), 1150-1162.  doi: 10.1137/050627113.  Google Scholar

[94]

R. E. SternS. CuiM. L. Delle MonacheR. BhadaniM. BuntingM. ChurchillN. HamiltonH. PohlmannF. WuB. PiccoliB. SeiboldJ. Sprinkle and D. B. Workai, Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments, Transportation Research Part C: Emerging Technologies, 89 (2018), 205-221.  doi: 10.1016/j.trc.2018.02.005.  Google Scholar

[95]

S. H. Strogatz, Nonlinear Ddynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second edition, Westview Press, Boulder, CO, 2015.  Google Scholar

[96]

D. Swaroop and J. K. Hedrick, String stability of interconnected systems, IEEE transactions on automatic control, 41 (1996), 349-357.  doi: 10.1109/9.486636.  Google Scholar

[97]

D. Swaroop and J. K. Hedrick, Direct adaptive longitudinal control of vehicle platoons, IEEE Transactions on Vehicular Technology, 50 (2001), 150-161.  doi: 10.1109/CDC.1994.410877.  Google Scholar

[98]

D. SwaroopJ. K. HedrickC. Chien and P. Ioannou, A comparision of spacing and headway control laws for automatically controlled vehicles, Vehicle System Dynamics, 23 (1994), 597-625.   Google Scholar

[99]

A. Talebpour and H. S. Mahmassani, Influence of connected and autonomous vehicles on traffic flow stability and throughput, Transportation Research Part C: Emerging Technologies, 71 (2016), 143-163.  doi: 10.1016/j.trc.2016.07.007.  Google Scholar

[100]

A. TalebpourH. S. Mahmassani and S. H. Hamdar, Modeling lane-changing behavior in a connected environment: A game theory approach, Transportation Research Procedia, 7 (2015), 420-440.   Google Scholar

[101]

A. TalebpourH. S. MahmassaniS. H. Hamdar and et al., Effect of information availability on stability of traffic flow: Percolation theory approach, Transportation Research Part B: Methodological, 117 (2018), 624-638.   Google Scholar

[102]

M. Treiber, A. Hennecke and D. Helbing, Congested traffic states in empirical observations and microscopic simulations, Physical Review E, 62 (2000), 1805. doi: 10.1103/PhysRevE.62.1805.  Google Scholar

[103]

B. Van AremC. J. Van Driel and R. Visser, The impact of cooperative adaptive cruise control on traffic-flow characteristics, IEEE Transactions on Intelligent Transportation Systems, 7 (2006), 429-436.   Google Scholar

[104]

J. VanderWerf, S. Shladover, N. Kourjanskaia, M. Miller and H. Krishnan, Modeling effects of driver control assistance systems on traffic, Transportation Research Record: Journal of the Transportation Research Board, 167–174. Google Scholar

[105]

M. WangW. DaamenS. P. Hoogendoorn and B. van Arem, Rolling horizon control framework for driver assistance systems. Part Ⅰ: Mathematical formulation and non-cooperative systems, Transportation Research Part C: Emerging Technologies, 40 (2014), 271-289.  doi: 10.1016/j.trc.2013.11.023.  Google Scholar

[106]

M. WangW. DaamenS. P. Hoogendoorn and B. van Arem, Rolling horizon control framework for driver assistance systems. Part Ⅱ: Cooperative sensing and cooperative control, Transportation Research Part C: emerging technologies, 40 (2014), 290-311.  doi: 10.1016/j.trc.2013.11.024.  Google Scholar

[107]

M. WangW. DaamenS. P. Hoogendoorn and B. van Arem, Cooperative car-following control: Distributed algorithm and impact on moving jam features, IEEE Transactions on Intelligent Transportation Systems, 17 (2016), 1459-1471.  doi: 10.1109/TITS.2015.2505674.  Google Scholar

[108]

M. WangS. P. HoogendoornW. DaamenB. van Arem and R. Happee, Game theoretic approach for predictive lane-changing and car-following control, Transportation Research Part C: Emerging Technologies, 58 (2015), 73-92.  doi: 10.1016/j.trc.2015.07.009.  Google Scholar

[109]

Y. G. WeiC. AvcıJ. T. LiuB. BelezamoN. AydınP. F. Li and X. S. Zhou, Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models, Transportation Research Part B: Methodological, 106 (2017), 102-129.  doi: 10.1016/j.trb.2017.10.012.  Google Scholar

[110]

G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1974.  Google Scholar

[111]

C. Wu, A. M. Bayen and A. Mehta, Stabilizing traffic with autonomous vehicles, 2018 IEEE International Conference on Robotics and Automation (ICRA), (2018), 1–7. doi: 10.1109/ICRA.2018.8460567.  Google Scholar

[112]

C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky and A. M. Bayen, Flow: Architecture and benchmarking for reinforcement learning in traffic control, preprint, arXiv: 1710.05465. Google Scholar

[113]

C. Wu, A. Kreidieh, E. Vinitsky and A. M. Bayen, Emergent behaviors in mixed-autonomy traffic, Conference on Robot Learning, (2017), 398–407. Google Scholar

[114]

C. Wu, K. Parvate, N. Kheterpal, L. Dickstein, A. Mehta, E. Vinitsky and A. M. Bayen, Framework for control and deep reinforcement learning in traffic, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), (2017), 1–8. doi: 10.1109/ITSC.2017.8317694.  Google Scholar

[115]

H.-H. Yang and H. Peng, Development of an errorable car-following driver model, Vehicle System Dynamics, 48 (2010), 751-773.   Google Scholar

[116]

H. D. YaoJ. X. CuiX. P. LiY. Wang and S. An, A trajectory smoothing method at signalized intersection based on individualized variable speed limits with location optimization, Transportation Research Part D: Transport and Environment, 62 (2018), 456-473.  doi: 10.1016/j.trd.2018.03.010.  Google Scholar

[117]

J. H. Yoo and R. Langari, Stackelberg game based model of highway driving, ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, (2012), 499–508. doi: 10.1115/DSCC2012-MOVIC2012-8703.  Google Scholar

[118]

J. H. Yoo and R. Langari, A Stackelberg game theoretic driver model for merging, ASME 2013 Dynamic Systems and Control Conference, (2013), V002T30A003. doi: 10.1115/DSCC2013-3882.  Google Scholar

[119]

H. T. YuH. E. Tseng and R. Langari, A human-like game theory-based controller for automatic lane changing, Transportation Research Part C: Emerging Technologies, 88 (2018), 140-158.  doi: 10.1016/j.trc.2018.01.016.  Google Scholar

[120]

H. M. Zhang, A theory of nonequilibrium traffic flow, Transportation Research Part B: Methodological, 32 (1998), 485-498.  doi: 10.1016/S0191-2615(98)00014-9.  Google Scholar

[121]

H. M. Zhang, A mathematical theory of traffic hysteresis, Transportation Research Part B: Methodological, 33 (1999), 1-23.  doi: 10.1016/S0191-2615(98)00022-8.  Google Scholar

[122]

H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.  doi: 10.1016/S0191-2615(00)00050-3.  Google Scholar

[123]

H. M. Zhang and T. Kim, A car-following theory for multiphase vehicular traffic flow, Transportation Research Part B: Methodological, 39 (2005), 385-399.  doi: 10.1016/j.trb.2004.06.005.  Google Scholar

[124]

D. ZhaoX. N. HuangH. PengH. Lam and D. J. LeBlanc, Accelerated evaluation of automated vehicles in car-following maneuvers, IEEE Transactions on Intelligent Transportation Systems, 19 (2018), 733-744.  doi: 10.1109/TITS.2017.2701846.  Google Scholar

[125]

D. ZhaoH. LamH. PengS. BaoD. J. LeBlancK. Nobukawa and C. S. Pan, Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques, IEEE Transactions on Intelligent Transportation Systems, 18 (2017), 595-607.  doi: 10.1109/TITS.2016.2582208.  Google Scholar

[126]

Z. D. ZhengS. AhnD. J. Chen and J. Laval, Applications of wavelet transform for analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations, Transportation Research Part B: Methodological, 45 (2011), 372-384.  doi: 10.1016/j.trb.2010.08.002.  Google Scholar

[127]

Y. ZhouS. AhnM. Chitturi and D. A. Noyce, Rolling horizon stochastic optimal control strategy for ACC and CACC under uncertainty, Transportation Research Part C: Emerging Technologies, 83 (2017), 61-76.  doi: 10.1016/j.trc.2017.07.011.  Google Scholar

show all references

References:
[1]

Y. AchdouF. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM Journal on Control and Optimization, 50 (2012), 77-109.  doi: 10.1137/100790069.  Google Scholar

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM Journal on Numerical Analysis, 48 (2010), 1136-1162.  doi: 10.1137/090758477.  Google Scholar

[3]

Y. Achdou and V. Perez, Iterative strategies for solving linearized discrete mean field games systems, Netw. Heterog. Media, 7 (2012), 197-217.  doi: 10.3934/nhm.2012.7.197.  Google Scholar

[4]

O. D. AltanG. WuM. J. BarthK. Boriboonsomsin and J. A. Stark, Glidepath: Eco-friendly automated approach and departure at signalized intersections, IEEE Transactions on Intelligent Vehicles, 2 (2017), 266-277.  doi: 10.1109/TIV.2017.2767289.  Google Scholar

[5]

D. M. Ambrose, Existence theory for non-separable mean field games in sobolev spaces, preprint, arXiv: 1807.02223. Google Scholar

[6]

S. Arefizadeh and A. Talebpour, A platooning strategy for automated vehicles in the presence of speed limit fluctuations, Transportation Research Record, 2672 (2018), 154-161.  doi: 10.1177/0361198118784176.  Google Scholar

[7]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938.  doi: 10.1137/S0036139997332099.  Google Scholar

[8]

M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Physical Review E, 51 (1995), 1035. Google Scholar

[9]

M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[10]

T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, Classics in Applied Mathematics, 23. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.  Google Scholar

[11]

J.-D. Benamou and G. Carlier, Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations, Journal of Optimization Theory and Applications, 167 (2015), 1-26.  doi: 10.1007/s10957-015-0725-9.  Google Scholar

[12]

J.-D. Benamou, G. Carlier and F. Santambrogio, Variational mean field games, Active Particles, Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 141–171. doi: doi.  Google Scholar

[13]

M. Brackstone and M. McDonald, Car-following: A historical review, Transportation Research Part F: Traffic Psychology and Behaviour, 2 (1999), 181-196.  doi: 10.1016/S1369-8478(00)00005-X.  Google Scholar

[14]

M. Burger, M. Di Francesco, P. A. Markowich and M.-T. Wolfram, Mean field games with nonlinear mobilities in pedestrian dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1311–1333, arXiv: 1304.5201. doi: 10.3934/dcdsb.2014.19.1311.  Google Scholar

[15]

P. Cardaliaguet, Notes on Mean Field Games, Technical report, 2010. Google Scholar

[16]

P. Cardaliaguet, Weak solutions for first order mean field games with local coupling, Analysis and Geometry in Control Theory and Its Applications, Springer INdAM Ser., Springer, Cham, 11 (2015), 111–158. doi: 10.1007/978-3-319-06917-3_5.  Google Scholar

[17]

D. J. ChenJ. LavalZ. D. Zheng and S. Ahn, A behavioral car-following model that captures traffic oscillations, Transportation Research Part B: Methodological, 46 (2012), 744-761.  doi: 10.1016/j.trb.2012.01.009.  Google Scholar

[18]

G. Chevalier, J. Le Ny and R. Malhamé, A micro-macro traffic model based on mean-field games, 2015 American Control Conference (ACC), IEEE, (2015), 1983–1988. doi: 10.1109/ACC.2015.7171024.  Google Scholar

[19]

Y. T. Chow, W. C. Li, S. Osher and W. T. Yin, Algorithm for Hamilton-Jacobi equations in density space via a generalized Hopf formula, J. Sci. Comput., 80 (2019), 1195–1239, arXiv: 1805.01636. doi: 10.1007/s10915-019-00972-9.  Google Scholar

[20]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Semin. Mat. Univ. Padova, 131 (2014), 217-235.  doi: 10.4171/RSMUP/131-13.  Google Scholar

[21]

R. CouilletS. M. PerlazaH. Tembine and M. Debbah, Electrical vehicles in the smart grid: A mean field game analysis, IEEE Journal on Selected Areas in Communications, 30 (2012), 1086-1096.  doi: 10.1109/JSAC.2012.120707.  Google Scholar

[22]

S. CuiB. SeiboldR. Stern and D. B. Work, Stabilizing traffic flow via a single autonomous vehicle: Possibilities and limitations, Intelligent Vehicles Symposium, 2017 IEEE, 4 (2017), 1336-1341.  doi: 10.1109/IVS.2017.7995897.  Google Scholar

[23]

C. F. Daganzo, A variational formulation of kinematic waves: Basic theory and complex boundary conditions, Transportation Research Part B: Methodological, 39 (2005), 187-196.  doi: 10.1016/j.trb.2004.04.003.  Google Scholar

[24]

C. F. Daganzo, In traffic flow, cellular automata = kinematic waves, Transportation Research Part B: Methodological, 40 (2006), 396-403.  doi: 10.1016/j.trb.2005.05.004.  Google Scholar

[25]

C. F. Daganzo, On the variational theory of traffic flow: Well-posedness, duality and applications, Networks & Heterogeneous Media, 1 (2006), 601-619.  doi: 10.3934/nhm.2006.1.601.  Google Scholar

[26]

S. Darbha and K. R. Rajagopal, Intelligent cruise control systems and traffic flow stability, Transportation Research Part C: Emerging Technologies, 7 (1999), 329-352.  doi: 10.1016/S0968-090X(99)00024-8.  Google Scholar

[27]

P. DegondJ.-G. Liu and C. Ringhofer, Large-scale dynamics of mean-field games driven by local nash equilibria, Journal of Nonlinear Science, 24 (2014), 93-115.  doi: 10.1007/s00332-013-9185-2.  Google Scholar

[28]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for Rational Mechanics and Analysis, 217 (2015), 831-871.  doi: 10.1007/s00205-015-0843-4.  Google Scholar

[29]

B. Djehiche, A. Tcheukam and H. Tembine, Mean-field-type games in engineering, preprint, arXiv: 1605.03281. doi: 10.3934/ElectrEng.2017.1.18.  Google Scholar

[30]

A. Dreves and M. Gerdts, A generalized Nash equilibrium approach for optimal control problems of autonomous cars, Optimal Control Applications and Methods, 39 (2018), 326-342.  doi: 10.1002/oca.2348.  Google Scholar

[31]

P. G. Gipps, A behavioural car-following model for computer simulation, Transportation Research Part B: Methodological, 15 (1981), 105-111.  doi: 10.1016/0191-2615(81)90037-0.  Google Scholar

[32]

G. H. Golub and C. F. Van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013.  Google Scholar

[33]

S. Gong and L. L. Du, Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles, Transportation Research part B: Methodological, 116 (2018), 25-61.  doi: 10.1016/j.trb.2018.07.005.  Google Scholar

[34]

S. Y. GongJ. L. Shen and L. L. Du, Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon, Transportation Research Part B: Methodological, 94 (2016), 314-334.  doi: 10.1016/j.trb.2016.09.016.  Google Scholar

[35]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., Springer, Berlin, 2003 (2011), 205–266. doi: 10.1007/978-3-642-14660-2_3.  Google Scholar

[36]

W. Hackbusch, Multi-Grid Methods and Applications, Springer Science & Business Media, 2013. Google Scholar

[37]

P. HaoG. WuK. Boriboonsomsin and M. J. Barth, Eco-approach and departure (ead) application for actuated signals in real-world traffic, IEEE Transactions on Intelligent Transportation Systems, 20 (2018), 30-40.  doi: 10.1109/TITS.2018.2794509.  Google Scholar

[38]

D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models, The European Physical Journal B, 69 (2009), 539-548.  doi: 10.1007/978-3-642-32160-3_3.  Google Scholar

[39]

L. N. Hoang, The new big fish called mean-field game theory, (2014), http://www.science4all.org/article/mean-field-games/, [Online; accessed 4.5.2020]. Google Scholar

[40]

K. Huang, X. Di, Q. Du and X. Chen, Stabilizing traffic via autonomous vehicles: A continuum mean field game approach, in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, 2019, 3269–3274. Google Scholar

[41]

K. HuangX. DiQ. Du and X. Chen, Scalable traffic stability analysis in mixed-autonomy using continuum models, Transportation Research Part C: Emerging Technologies, 111 (2020), 616-630.   Google Scholar

[42]

M. Y. HuangR. P. Malhamé and P. E. Caines, Large population stochastic dynamic games: Closed-loop Mckean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), 221-251.  doi: 10.4310/CIS.2006.v6.n3.a5.  Google Scholar

[43]

Z. Y. HuangH. LamD. J. LeBlanc and D. Zhao, Accelerated evaluation of automated vehicles using piecewise mixture models, IEEE Transactions on Intelligent Transportation Systems, 19 (2018), 2845-2855.  doi: 10.1109/TITS.2017.2766172.  Google Scholar

[44]

M.-I. M. ImprialouM. QuddusD. E. Pitfield and D. Lord, Re-visiting crash-speed relationships: A new perspective in crash modelling, Accident Analysis & Prevention, 86 (2016), 173-185.  doi: 10.1016/j.aap.2015.10.001.  Google Scholar

[45]

P. A. Ioannou and C.-C. Chien, Autonomous intelligent cruise control, IEEE Transactions on Vehicular technology, 42 (1993), 657-672.  doi: 10.1109/25.260745.  Google Scholar

[46]

I. G. JinS. S. AvedisovC. R. HeW. B. QinM. Sadeghpour and G. Orosz, Experimental validation of connected automated vehicle design among human-driven vehicles, Transportation Research Part C: Emerging Technologies, 91 (2018), 335-352.   Google Scholar

[47]

I. G. Jin and G. Orosz, Dynamics of connected vehicle systems with delayed acceleration feedback, Transportation Research Part C: Emerging Technologies, 46 (2014), 46-64.   Google Scholar

[48]

I. G. Jin and G. Orosz, Connected cruise control among human-driven vehicles: Experiment-based parameter estimation and optimal control design, Transportation Research Part C: Emerging Technologies, 95 (2018), 445-459.   Google Scholar

[49]

W.-L. Jin, On the equivalence between continuum and car-following models of traffic flow, Transportation Research Part B: Methodological, 93 (2016), 543-559.  doi: 10.1016/j.trb.2016.08.007.  Google Scholar

[50]

W.-L. Jin and H. M. Zhang, On the distribution schemes for determining flows through a merge, Transportation Research Part B: Methodological, 37 (2003), 521-540.  doi: 10.1016/S0191-2615(02)00026-7.  Google Scholar

[51]

P. KachrooS. Agarwal and S. Sastry, Inverse problem for non-viscous mean field control: Example from traffic, IEEE Transactions on Automatic Control, 61 (2016), 3412-3421.  doi: 10.1109/TAC.2015.2511929.  Google Scholar

[52]

A. KestingM. Treiber and D. Helbing, Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 4585-4605.  doi: 10.1098/rsta.2010.0084.  Google Scholar

[53]

A. KestingM. TreiberM. Schönhof and D. Helbing, Adaptive cruise control design for active congestion avoidance, Transportation Research Part C: Emerging Technologies, 16 (2008), 668-683.  doi: 10.1016/j.trc.2007.12.004.  Google Scholar

[54]

C. Kim and R. Langari, Game theory based autonomous vehicles operation, International Journal of Vehicle Design, 65 (2014), 360-383.  doi: 10.1504/IJVD.2014.063832.  Google Scholar

[55]

A. LachapelleJ. Salomon and G. Turinici, Computation of mean field equilibria in economics, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567-588.  doi: 10.1142/S0218202510004349.  Google Scholar

[56]

A. Lachapelle and M.-T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds, Transportation Research part B: Methodological, 45 (2011), 1572-1589.  doi: 10.1016/j.trb.2011.07.011.  Google Scholar

[57]

J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[58]

J. A. Laval and L. Leclercq, The Hamilton-Jacobi partial differential equation and the three representations of traffic flow, Transportation Research Part B: Methodological, 52 (2013), 17-30.  doi: 10.1016/j.trb.2013.02.008.  Google Scholar

[59]

D. A. Lazar, R. Pedarsani, K. Chandrasekher and D. Sadigh, Maximizing road capacity using cars that influence people, in 2018 IEEE Conference on Decision and Control (CDC) Google Scholar

[60]

J.-P. Lebacque, First-order macroscopic traffic flow models: Intersection modeling, network modeling, Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic TheoryUniversity of Maryland, College Park, (2005). Google Scholar

[61]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.  Google Scholar

[62]

M. W. Levin and S. D. Boyles, A multiclass cell transmission model for shared human and autonomous vehicle roads, Transportation Research Part C: Emerging Technologies, 62 (2016), 103-116.  doi: 10.1016/j.trc.2015.10.005.  Google Scholar

[63]

N. LiD. W. OylerM. ZhangY. YildizI. Kolmanovsky and A. R. Girard, Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems, IEEE Transactions on Control Systems Technology, 26 (2018), 1782-1797.  doi: 10.1109/TCST.2017.2723574.  Google Scholar

[64]

X. P. LiA. GhiasiZ. G. Xu and X. B. Qu, A piecewise trajectory optimization model for connected automated vehicles: Exact optimization algorithm and queue propagation analysis, Transportation Research Part B: Methodological, 118 (2018), 429-456.  doi: 10.1016/j.trb.2018.11.002.  Google Scholar

[65]

Y. LiC. TangS. Peeta and Y. Wang, Nonlinear consensus-based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays, IEEE Transactions on Intelligent Transportation Systems, 20 (2019), 2209-2219.  doi: 10.1109/TITS.2018.2865546.  Google Scholar

[66]

M. J. Lighthill, On sound generated aerodynamically. I. General theory, Proc. R. Soc. Lond. A, 211 (1952), 564-587.  doi: 10.1098/rspa.1952.0060.  Google Scholar

[67]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[68]

C. L. Liu and M. Tomizuka, Safe exploration: Addressing various uncertainty levels in human robot interactions, 2015 American Control Conference (ACC), IEEE, (2015), 465–470. doi: 10.1109/ACC.2015.7170779.  Google Scholar

[69]

C. L. Liu and M. Tomizuka, Enabling safe freeway driving for automated vehicles, American Control Conference (ACC), IEEE, (2016), 3461–3467. doi: 10.1109/ACC.2016.7525449.  Google Scholar

[70]

J. Q. MaX. P. LiS. E. ShladoverH. A. RakhaX.-Y. LuR. Jagannathan and D. J. Dailey, Freeway speed harmonization, IEEE Trans. Intelligent Vehicles, 1 (2016), 78-89.  doi: 10.1109/TIV.2016.2551540.  Google Scholar

[71]

A. A. MalikopoulosS. HongB. B. ParkJ. Lee and S. Ryu, Optimal control for speed harmonization of automated vehicles, IEEE Transactions on Intelligent Transportation Systems, 20 (2019), 2405-2417.  doi: 10.1109/TITS.2018.2865561.  Google Scholar

[72]

V. Milanés and S. E. Shladover, Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data, Transportation Research Part C: Emerging Technologies, 48 (2014), 285-300.   Google Scholar

[73]

V. MilanésS. E. ShladoverJ. SpringC. NowakowskiH. Kawazoe and M. Nakamura, Cooperative adaptive cruise control in real traffic situations, IEEE Transactions on Intelligent Transportation Systems, 15 (2014), 296-305.   Google Scholar

[74]

G. J. NausR. P. VugtsJ. PloegM. J. van de Molengraft and M. Steinbuch, String-stable CACC design and experimental validation: A frequency-domain approach, IEEE Transactions on Vehicular Technology, 59 (2010), 4268-4279.  doi: 10.1109/TVT.2010.2076320.  Google Scholar

[75]

G. F. Newell, A simplified theory of kinematic waves in highway traffic, Part Ⅰ: General theory, Transportation Research Part B: Methodological, 27 (1993), 281-287.  doi: 10.1016/0191-2615(93)90038-C.  Google Scholar

[76]

G. F. Newell, Nonlinear effects in the dynamics of car following, Operations Research, 9 (1961), 209-229.  doi: 10.1287/opre.9.2.209.  Google Scholar

[77]

D. NgoduyS. P. Hoogendoorn and R. Liu, Continuum modeling of cooperative traffic flow dynamics, Physica A: Statistical Mechanics and its Applications, 388 (2009), 2705-2716.  doi: 10.1016/j.physa.2009.02.040.  Google Scholar

[78]

G. Orosz, R. E. Wilson and G. Stépán, Traffic jams: Dynamics and control, (2010). Google Scholar

[79]

H. J. Payne, Model of freeway traffic and control, Mathematical Model of Public System, 51–61. Google Scholar

[80]

J. Ploeg, B. T. Scheepers, E. Van Nunen, N. Van de Wouw and H. Nijmeijer, Design and experimental evaluation of cooperative adaptive cruise control, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), (2011), 260–265. doi: 10.1109/ITSC.2011.6082981.  Google Scholar

[81]

K. N. Porfyri, I. K. Nikolos, A. I. Delis and M. Papageorgiou, Stability analysis of a macroscopic traffic flow model for adaptive cruise control systems, ASME 2015 International Mechanical Engineering Congress and Exposition, (2015), V012T15A002. doi: 10.1115/IMECE2015-50977.  Google Scholar

[82]

W. B. Qin and G. Orosz, Digital effects and delays in connected vehicles: Linear stability and simulations, ASME 2013 Dynamic Systems and Control Conference, (2013), V002T30A001. doi: 10.1115/DSCC2013-3830.  Google Scholar

[83]

W. B. Qin and G. Orosz, Scalable stability analysis on large connected vehicle systems subject to stochastic communication delays, Transportation Research Part C: Emerging Technologies, 83 (2017), 39-60.  doi: 10.1016/j.trc.2017.07.005.  Google Scholar

[84]

R. Rajamani and S. E. Shladover, An experimental comparative study of autonomous and co-operative vehicle-follower control systems, Transportation Research Part C: Emerging Technologies, 9 (2001), 15-31.  doi: 10.1016/S0968-090X(00)00021-8.  Google Scholar

[85]

P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[86]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28 Princeton University Press, Princeton, N.J., 1970. doi: doi.  Google Scholar

[87]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579-591.  doi: 10.3934/dcdss.2014.7.579.  Google Scholar

[88]

Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), 856-869.  doi: 10.1137/0907058.  Google Scholar

[89]

D. Sadigh, S. Sastry, S. A. Seshia and A. D. Dragan, Planning for autonomous cars that leverage effects on human actions, Robotics: Science and Systems, (2016). doi: 10.15607/RSS.2016.XII.029.  Google Scholar

[90]

W. J. Schakel, B. Van Arem and B. D. Netten, Effects of cooperative adaptive cruise control on traffic flow stability, Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, (2010), 759–764. doi: 10.1109/ITSC.2010.5625133.  Google Scholar

[91]

B. Seibold, M. R. Flynn, A. R. Kasimov and R. R. Rosales, Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models, Netw. Heterog. Media, 8 (2013), 745–772, arXiv: 1204.5510. doi: 10.3934/nhm.2013.8.745.  Google Scholar

[92]

R. W. Shephard and R. Färe, The law of diminishing returns, Production Theory, Lecture Notes in Econom. and Math. Systems, Springer, Berlin, 99 (1974), 287–318.  Google Scholar

[93]

F. Siebel and W. Mauser, On the fundamental diagram of traffic flow, SIAM Journal on Applied Mathematics, 66 (2006), 1150-1162.  doi: 10.1137/050627113.  Google Scholar

[94]

R. E. SternS. CuiM. L. Delle MonacheR. BhadaniM. BuntingM. ChurchillN. HamiltonH. PohlmannF. WuB. PiccoliB. SeiboldJ. Sprinkle and D. B. Workai, Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments, Transportation Research Part C: Emerging Technologies, 89 (2018), 205-221.  doi: 10.1016/j.trc.2018.02.005.  Google Scholar

[95]

S. H. Strogatz, Nonlinear Ddynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second edition, Westview Press, Boulder, CO, 2015.  Google Scholar

[96]

D. Swaroop and J. K. Hedrick, String stability of interconnected systems, IEEE transactions on automatic control, 41 (1996), 349-357.  doi: 10.1109/9.486636.  Google Scholar

[97]

D. Swaroop and J. K. Hedrick, Direct adaptive longitudinal control of vehicle platoons, IEEE Transactions on Vehicular Technology, 50 (2001), 150-161.  doi: 10.1109/CDC.1994.410877.  Google Scholar

[98]

D. SwaroopJ. K. HedrickC. Chien and P. Ioannou, A comparision of spacing and headway control laws for automatically controlled vehicles, Vehicle System Dynamics, 23 (1994), 597-625.   Google Scholar

[99]

A. Talebpour and H. S. Mahmassani, Influence of connected and autonomous vehicles on traffic flow stability and throughput, Transportation Research Part C: Emerging Technologies, 71 (2016), 143-163.  doi: 10.1016/j.trc.2016.07.007.  Google Scholar

[100]

A. TalebpourH. S. Mahmassani and S. H. Hamdar, Modeling lane-changing behavior in a connected environment: A game theory approach, Transportation Research Procedia, 7 (2015), 420-440.   Google Scholar

[101]

A. TalebpourH. S. MahmassaniS. H. Hamdar and et al., Effect of information availability on stability of traffic flow: Percolation theory approach, Transportation Research Part B: Methodological, 117 (2018), 624-638.   Google Scholar

[102]

M. Treiber, A. Hennecke and D. Helbing, Congested traffic states in empirical observations and microscopic simulations, Physical Review E, 62 (2000), 1805. doi: 10.1103/PhysRevE.62.1805.  Google Scholar

[103]

B. Van AremC. J. Van Driel and R. Visser, The impact of cooperative adaptive cruise control on traffic-flow characteristics, IEEE Transactions on Intelligent Transportation Systems, 7 (2006), 429-436.   Google Scholar

[104]

J. VanderWerf, S. Shladover, N. Kourjanskaia, M. Miller and H. Krishnan, Modeling effects of driver control assistance systems on traffic, Transportation Research Record: Journal of the Transportation Research Board, 167–174. Google Scholar

[105]

M. WangW. DaamenS. P. Hoogendoorn and B. van Arem, Rolling horizon control framework for driver assistance systems. Part Ⅰ: Mathematical formulation and non-cooperative systems, Transportation Research Part C: Emerging Technologies, 40 (2014), 271-289.  doi: 10.1016/j.trc.2013.11.023.  Google Scholar

[106]

M. WangW. DaamenS. P. Hoogendoorn and B. van Arem, Rolling horizon control framework for driver assistance systems. Part Ⅱ: Cooperative sensing and cooperative control, Transportation Research Part C: emerging technologies, 40 (2014), 290-311.  doi: 10.1016/j.trc.2013.11.024.  Google Scholar

[107]

M. WangW. DaamenS. P. Hoogendoorn and B. van Arem, Cooperative car-following control: Distributed algorithm and impact on moving jam features, IEEE Transactions on Intelligent Transportation Systems, 17 (2016), 1459-1471.  doi: 10.1109/TITS.2015.2505674.  Google Scholar

[108]

M. WangS. P. HoogendoornW. DaamenB. van Arem and R. Happee, Game theoretic approach for predictive lane-changing and car-following control, Transportation Research Part C: Emerging Technologies, 58 (2015), 73-92.  doi: 10.1016/j.trc.2015.07.009.  Google Scholar

[109]

Y. G. WeiC. AvcıJ. T. LiuB. BelezamoN. AydınP. F. Li and X. S. Zhou, Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models, Transportation Research Part B: Methodological, 106 (2017), 102-129.  doi: 10.1016/j.trb.2017.10.012.  Google Scholar

[110]

G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1974.  Google Scholar

[111]

C. Wu, A. M. Bayen and A. Mehta, Stabilizing traffic with autonomous vehicles, 2018 IEEE International Conference on Robotics and Automation (ICRA), (2018), 1–7. doi: 10.1109/ICRA.2018.8460567.  Google Scholar

[112]

C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky and A. M. Bayen, Flow: Architecture and benchmarking for reinforcement learning in traffic control, preprint, arXiv: 1710.05465. Google Scholar

[113]

C. Wu, A. Kreidieh, E. Vinitsky and A. M. Bayen, Emergent behaviors in mixed-autonomy traffic, Conference on Robot Learning, (2017), 398–407. Google Scholar

[114]

C. Wu, K. Parvate, N. Kheterpal, L. Dickstein, A. Mehta, E. Vinitsky and A. M. Bayen, Framework for control and deep reinforcement learning in traffic, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), (2017), 1–8. doi: 10.1109/ITSC.2017.8317694.  Google Scholar

[115]

H.-H. Yang and H. Peng, Development of an errorable car-following driver model, Vehicle System Dynamics, 48 (2010), 751-773.   Google Scholar

[116]

H. D. YaoJ. X. CuiX. P. LiY. Wang and S. An, A trajectory smoothing method at signalized intersection based on individualized variable speed limits with location optimization, Transportation Research Part D: Transport and Environment, 62 (2018), 456-473.  doi: 10.1016/j.trd.2018.03.010.  Google Scholar

[117]

J. H. Yoo and R. Langari, Stackelberg game based model of highway driving, ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, (2012), 499–508. doi: 10.1115/DSCC2012-MOVIC2012-8703.  Google Scholar

[118]

J. H. Yoo and R. Langari, A Stackelberg game theoretic driver model for merging, ASME 2013 Dynamic Systems and Control Conference, (2013), V002T30A003. doi: 10.1115/DSCC2013-3882.  Google Scholar

[119]

H. T. YuH. E. Tseng and R. Langari, A human-like game theory-based controller for automatic lane changing, Transportation Research Part C: Emerging Technologies, 88 (2018), 140-158.  doi: 10.1016/j.trc.2018.01.016.  Google Scholar

[120]

H. M. Zhang, A theory of nonequilibrium traffic flow, Transportation Research Part B: Methodological, 32 (1998), 485-498.  doi: 10.1016/S0191-2615(98)00014-9.  Google Scholar

[121]

H. M. Zhang, A mathematical theory of traffic hysteresis, Transportation Research Part B: Methodological, 33 (1999), 1-23.  doi: 10.1016/S0191-2615(98)00022-8.  Google Scholar

[122]

H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.  doi: 10.1016/S0191-2615(00)00050-3.  Google Scholar

[123]

H. M. Zhang and T. Kim, A car-following theory for multiphase vehicular traffic flow, Transportation Research Part B: Methodological, 39 (2005), 385-399.  doi: 10.1016/j.trb.2004.06.005.  Google Scholar

[124]

D. ZhaoX. N. HuangH. PengH. Lam and D. J. LeBlanc, Accelerated evaluation of automated vehicles in car-following maneuvers, IEEE Transactions on Intelligent Transportation Systems, 19 (2018), 733-744.  doi: 10.1109/TITS.2017.2701846.  Google Scholar

[125]

D. ZhaoH. LamH. PengS. BaoD. J. LeBlancK. Nobukawa and C. S. Pan, Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques, IEEE Transactions on Intelligent Transportation Systems, 18 (2017), 595-607.  doi: 10.1109/TITS.2016.2582208.  Google Scholar

[126]

Z. D. ZhengS. AhnD. J. Chen and J. Laval, Applications of wavelet transform for analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations, Transportation Research Part B: Methodological, 45 (2011), 372-384.  doi: 10.1016/j.trb.2010.08.002.  Google Scholar

[127]

Y. ZhouS. AhnM. Chitturi and D. A. Noyce, Rolling horizon stochastic optimal control strategy for ACC and CACC under uncertainty, Transportation Research Part C: Emerging Technologies, 83 (2017), 61-76.  doi: 10.1016/j.trc.2017.07.011.  Google Scholar

Figure 1.  From Micro to Macroscopic Traffic Flow Models
Figure 2.  From an $ N $-car differential game to MFG (adapted from [39])
Figure 3.  Connections between MFG and LWR
Figure 4.  [MFG-LWR]
Figure 5.  Density Evolution of [MFG-NonSeparable] and [MFG-Separable]
Figure 6.  Fundamental diagram of [MFG-NonSeparable]
Figure 7.  Density, speed and optimal cost profiles for [MFG-NonSeparable] and [MFG-Separable] at $ t = 0 $ and $ t = 1.5 $
Figure 8.  Convergence of solution algorithm in $ L^1 $ norm
Figure 9.  $ N = 21 $ cars' trajectories integrated from the MFE solution of [MFG-NonSeparable]
Figure 10.  MFE-constructed control cost v.s. best response strategy cost, $ N = 21 $ cars
Figure 11.  Accuracy v.s. Number of cars
Table 1.  Classification of macroscopic traffic flow models
Speed Acceleration rate
Traditional First-order (e.g., LWR) Higher-order (e.g., PW/ARZ)
Game-theoretic First-order MFGs Higher-order MFGs
Speed Acceleration rate
Traditional First-order (e.g., LWR) Higher-order (e.g., PW/ARZ)
Game-theoretic First-order MFGs Higher-order MFGs
[1]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

[2]

Nicolas Crouseilles, Mohammed Lemou. An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits. Kinetic & Related Models, 2011, 4 (2) : 441-477. doi: 10.3934/krm.2011.4.441

[3]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[4]

Francesca Marcellini. Free-congested and micro-macro descriptions of traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 543-556. doi: 10.3934/dcdss.2014.7.543

[5]

Carmen G. Higuera-Chan, Héctor Jasso-Fuentes, J. Adolfo Minjárez-Sosa. Control systems of interacting objects modeled as a game against nature under a mean field approach. Journal of Dynamics & Games, 2017, 4 (1) : 59-74. doi: 10.3934/jdg.2017004

[6]

Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks & Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263

[7]

Shuhua Zhang, Junying Zhao, Ming Yan, Xinyu Wang. Modeling and computation of mean field game with compound carbon abatement mechanisms. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020121

[8]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[9]

Stamatios Katsikas, Vassilli Kolokoltsov. Evolutionary, mean-field and pressure-resistance game modelling of networks security. Journal of Dynamics & Games, 2019, 6 (4) : 315-335. doi: 10.3934/jdg.2019021

[10]

Martin Burger, Alexander Lorz, Marie-Therese Wolfram. Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth. Kinetic & Related Models, 2017, 10 (1) : 117-140. doi: 10.3934/krm.2017005

[11]

Elisabetta Carlini, Francisco J. Silva. A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4269-4292. doi: 10.3934/dcds.2015.35.4269

[12]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020025

[13]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[14]

Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086

[15]

Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks. Networks & Heterogeneous Media, 2016, 11 (3) : 395-413. doi: 10.3934/nhm.2016002

[16]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[17]

Pierre Cardaliaguet, Chloé Jimenez, Marc Quincampoix. Pure and Random strategies in differential game with incomplete informations. Journal of Dynamics & Games, 2014, 1 (3) : 363-375. doi: 10.3934/jdg.2014.1.363

[18]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[19]

Ali Naimi-Sadigh, S. Kamal Chaharsooghi, Marzieh Mozafari. Optimal pricing and advertising decisions with suppliers' oligopoly competition: Stakelberg-Nash game structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020028

[20]

Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems & Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]