[1]
|
E. Agullo, L. Giraud and Y.-F. Jing, Block GMRES method with inexact breakdowns and deflated restarting, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 1625-1651.
doi: 10.1137/140961912.
|
[2]
|
A. H. Baker, J. M. Dennis and E. R. Jessup, On improving linear solver performance: A block variant of GMRES, SIAM Journal on Scientific Computing, 27 (2006), 1608-1626.
doi: 10.1137/040608088.
|
[3]
|
H. Calandra, S. Gratton, R. Lago, X. Vasseur and L. M. Carvalho, A modified block flexible GMRES method with deflation at each iteration for the solution of non-hermitian linear systems with multiple right-hand sides, SIAM Journal on Scientific Computing, 35 (2013), S345–S367.
doi: 10.1137/120883037.
|
[4]
|
H. Calandra, S. Gratton, J. Langou, X. Pinel and X. Vasseur, Flexible variants of block restarted GMRES methods with application to geophysics, SIAM Journal on Scientific Computing, 34 (2012), A714–A736.
doi: 10.1137/10082364X.
|
[5]
|
T. F. Chan and M. K. Ng, Galerkin projection methods for solving multiple linear systems, SIAM Journal on Scientific Computing, 21 (1999), 836-850.
doi: 10.1137/S1064827598310227.
|
[6]
|
A. T. Chronopoulos and A. B. Kucherov, Block-$s$-step Krylov iterative methods, Numerical Linear Algebra with Applications, 17 (2010), 3-15.
doi: 10.1002/nla.643.
|
[7]
|
D. Darnell, R. B. Morgan and W. Wilcox, Deflated GMRES for systems with multiple shifts and multiple right-hand sides, Linear Algebra and its Applications, 429 (2008), 2415-2434.
doi: 10.1016/j.laa.2008.04.019.
|
[8]
|
I. S. Duff, A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Oxford University Press, 2017.
doi: 10.1093/acprof:oso/9780198508380.001.0001.
|
[9]
|
H. C. Elman, A. Ramage and D. J. Silvester, IFISS: A computational laboratory for investigating incompressible flow problems, SIAM Review, 56 (2014), 261-273.
doi: 10.1137/120891393.
|
[10]
|
H. C. Elman, D. J. Silvester and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford University Press, 2005.
|
[11]
|
J. A. Fiordilino, A second order ensemble timestepping algorithm for natural convection, SIAM Journal on Numerical Analysis, 56 (2018), 816-837.
doi: 10.1137/17M1135104.
|
[12]
|
W. D. Gropp, D. K. Kaushik, D. E. Keyes and B. F. Smith, Toward realistic performance bounds for implicit CFD codes, Parallel Computational Fluid Dynamics, (2000), 241–248.
doi: 10.1016/B978-044482851-4.50030-X.
|
[13]
|
G.-D. Gu and Z.-H. Cao, A block GMRES method augmented with eigenvectors, Applied Mathematics and Computation, 121 (2001), 271-289.
doi: 10.1016/S0096-3003(99)00294-5.
|
[14]
|
M. Gunzburger, N. Jiang and M. Schneier, An ensemble-proper orthogonal decomposition method for the nonstationary Navier-Stokes equations, SIAM Journal on Numerical Analysis, 55 (2017), 286-304.
doi: 10.1137/16M1056444.
|
[15]
|
M. Gunzburger, N. Jiang and Z. Wang, A second-order time-stepping scheme for simulating ensembles of parameterized flow problems, Computational Methods in Applied Mathematics, 19 (2019), 681-701.
doi: 10.1515/cmam-2017-0051.
|
[16]
|
M. Gunzburger, N. Jiang and Z. Wang, An efficient algorithm for simulating ensembles of parameterized flow problems, IMA Journal of Numerical Analysis, 39 (2019), 1180-1205.
doi: 10.1093/imanum/dry029.
|
[17]
|
M. D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1989.
|
[18]
|
M. H. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand sides: An introduction, Modern Mathematical Models, Methods and Algorithms for Real World Systems, 420–447.
|
[19]
|
H. Ji and Y. H. Li, A breakdown-free block conjugate gradient method, BIT Numerical Mathematics, 57 (2017), 379-403.
doi: 10.1007/s10543-016-0631-z.
|
[20]
|
N. Jiang, S. Kaya and W. Layton, Analysis of model variance for ensemble based turbulence modeling, Computational Methods in Applied Mathematics, 15 (2015), 173-188.
doi: 10.1515/cmam-2014-0029.
|
[21]
|
N. Jiang and W. Layton, An algorithm for fast calculation of flow ensembles, International Journal for Uncertainty Quantification, 4 (2014), 273-301.
doi: 10.1615/Int.J.UncertaintyQuantification.2014007691.
|
[22]
|
N. Jiang and W. Layton, Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion, Numerical Methods for Partial Differential Equations, 31 (2015), 630-651.
doi: 10.1002/num.21908.
|
[23]
|
Y. Luo and Z. Wang, An ensemble algorithm for numerical solutions to deterministic and random parabolic PDEs, SIAM Journal on Numerical Analysis, 56 (2018), 859-876.
doi: 10.1137/17M1131489.
|
[24]
|
Y. Luo and Z. Wang, A multilevel Monte Carlo ensemble scheme for solving random parabolic PDEs, SIAM Journal on Scientific Computing, 41 (2019), A622–A642.
doi: 10.1137/18M1174635.
|
[25]
|
J. McCarthy, Block-conjugate-gradient method, Physical Review D, 40 (1989), 2149.
doi: 10.1103/PhysRevD.40.2149.
|
[26]
|
M. Mohebujjaman and L. G. Rebholz, An efficient algorithm for computation of MHD flow ensembles, Computational Methods in Applied Mathematics, 17 (2017), 121-137.
doi: 10.1515/cmam-2016-0033.
|
[27]
|
R. B. Morgan, Restarted block-GMRES with deflation of eigenvalues, Applied Numerical Mathematics, 54 (2005), 222-236.
doi: 10.1016/j.apnum.2004.09.028.
|
[28]
|
D. P. O'Leary, The block conjugate gradient algorithm and related methods, Linear Algebra and its Applications, 29 (1980), 293-322.
doi: 10.1016/0024-3795(80)90247-5.
|
[29]
|
D. P. O'Leary, Parallel implementation of the block conjugate gradient algorithm, Parallel Computing, 5 (1987), 127-139.
doi: 10.1016/0167-8191(87)90013-5.
|
[30]
|
M. L. Parks, E. De Sturler, G. Mackey, D. D. Johnson and S. Maiti, Recycling Krylov subspaces for sequences of linear systems, SIAM Journal on Scientific Computing, 28 (2006), 1651-1674.
doi: 10.1137/040607277.
|
[31]
|
M. L. Parks, K. M. Soodhalter and D. B. Szyld, A block recycled GMRES method with investigations into aspects of solver performance, preprint, arXiv: 1604.01713.
|
[32]
|
V. Puzyrev and J. M. Cela, A review of block Krylov subspace methods for multisource electromagnetic modelling, Geophysical Journal International, 202 (2015), 1241-1252.
|
[33]
|
Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), 856-869.
doi: 10.1137/0907058.
|
[34]
|
Y. Saad, Iterative Methods for Sparse Linear Systems, Second edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003.
doi: 10.1137/1.9780898718003.
|
[35]
|
V. Simoncini and E. Gallopoulos, Convergence properties of block GMRES and matrix polynomials, Linear Algebra and its Applications, 247 (1996), 97-119.
doi: 10.1016/0024-3795(95)00093-3.
|
[36]
|
V. Simoncini and E. Gallopoulos, A hybrid block GMRES method for nonsymmetric systems with multiple right-hand sides, Journal of Computational and Applied Mathematics, 66 (1996), 457-469.
doi: 10.1016/0377-0427(95)00198-0.
|
[37]
|
L. N. Trefethen and D. Bau III, Numerical Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.
doi: 10.1137/1.9780898719574.
|