• Previous Article
    Differentiable solutions of the Feigenbaum-Kadanoff-Shenker equation
  • DCDS-B Home
  • This Issue
  • Next Article
    A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator
doi: 10.3934/dcdsb.2020135

Classical Langevin dynamics derived from quantum mechanics

1. 

Chair of Mathematics for Uncertainty Quantification, RWTH Aachen University, Germany

2. 

Institutionen för Matematik, Kungl. Tekniska Högskolan, 100 44 Stockholm, Sweden

* Corresponding author: Anders Szepessy (szepessy@kth.se)

Received  June 2019 Revised  January 2020 Published  April 2020

Fund Project: The second author is supported by the Swedish Research Council grants 2014-04776 and 2019-03725

The classical work by Zwanzig [J. Stat. Phys. 9 (1973) 215-220] derived Langevin dynamics from a Hamiltonian system of a heavy particle coupled to a heat bath. This work extends Zwanzig's model to a quantum system and formulates a more general coupling between a particle system and a heat bath. The main result proves, for a particular heat bath model, that ab initio Langevin molecular dynamics, with a certain rank one friction matrix determined by the coupling, approximates for any temperature canonical quantum observables, based on the system coordinates, more accurately than any Hamiltonian system in these coordinates, for large mass ratio between the system and the heat bath nuclei.

Citation: Håkon Hoel, Anders Szepessy. Classical Langevin dynamics derived from quantum mechanics. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020135
References:
[1]

A. AbdulleG. Vilmart and K. C. Zygalakis, Long time accuracy of Lie-Trotter splitting methods for Langevin dynamics, SIAM Journal on Numerical Analysis, 53 (2015), 1-16.  doi: 10.1137/140962644.  Google Scholar

[2]

A. D. Baczewski and S. D. Bond, Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel, The Journal of Chemical Physics, 139 (2013), 044107. doi: 10.1063/1.4815917.  Google Scholar

[3]

N. Bou-Rabee and H. Owhadi, Long-run accuracy of variational integrators in the stochastic context, SIAM Journal on Numerical Analysis, 48 (2010), 278-297.  doi: 10.1137/090758842.  Google Scholar

[4]

A. BrüngerC. L. Brooks III and M. Karplus, Stochastic boundary conditions for molecular dynamics simulations of ST2 water, Chemical Physics Letters, 105 (1984), 495-500.   Google Scholar

[5]

G. M. Dall'ara, Discreteness of the spectrum of Schrödinger operators with non-negative matrix valued potentials, Journal of Functional Analysis, 268 (2015), 3649-3679.  doi: 10.1016/j.jfa.2014.10.007.  Google Scholar

[6]

G. W. Ford and M. Kac, On the quantum Langevin equation, J. Statist. Phys., 46 (1987), 803-810.  doi: 10.1007/BF01011142.  Google Scholar

[7]

G. W. FordM. Kac and P. Mazur, Statistical mechanics of assemblies of coupled oscillators, J. Mathematical Phys., 6 (1965), 504-515.  doi: 10.1063/1.1704304.  Google Scholar

[8]

M. HairerM. Hutzenthaler and A. Jentzen, Loss of regularity for Kolmogorov equations, The Annals of Probability, 43 (2015), 468-527.  doi: 10.1214/13-AOP838.  Google Scholar

[9]

E. J. Hall, M. A. Katsoulakis and L. Rey-Bellet, Uncertainty quantification for generalized Langevin dynamics, The Journal of Chemical Physics, 145 (2016), 224108. doi: 10.1063/1.4971433.  Google Scholar

[10]

A. Kammonen, P. Plecháč, M. Sandberg and A. Szepessy, Canonical quantum observables for molecular systems approximated by ab initio molecular dynamics, Ann. Henri Poincaré, 19 (2018), 2727–2781. doi: 10.1007/s00023-018-0699-x.  Google Scholar

[11]

D. P. Kroese, T. Taimre and Z. I. Botev, Handbook of monte carlo methods, John Wiley & Sons, 706 (2011). doi: 10.1002/9781118014967.  Google Scholar

[12]

N. V. Krylov, Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, Journal of Functional Analysis, 250 (2007), 521-558.  doi: 10.1016/j.jfa.2007.04.003.  Google Scholar

[13]

R. Kupferman, Fractional kinetics in Kac-Zwanzig heat bath models, Journal of Statistical Physics, 114 (2004), 291-326.  doi: 10.1023/B:JOSS.0000003113.22621.f0.  Google Scholar

[14]

P. Langevin, On the theory of Brownian movement, C. R. Acad. Sci., 146 (1908), 530-533.   Google Scholar

[15]

J. L. Lebowitz and E. Rubin, Dynamical study of Brownian motion, Phys. Rev., 131 (1963), 2381-2396.  doi: 10.1103/PhysRev.131.2381.  Google Scholar

[16]

B. Leimkuhler and C. Matthews, Molecular Dynamics: With Deterministic and Stochastic Numerical Methods, Interdisciplinary Applied Mathematics, 39. Springer, Cham, 2015.  Google Scholar

[17]

T. Leliévre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, Acta Numerica, 25 (2016), 681-880.  doi: 10.1017/S0962492916000039.  Google Scholar

[18]

D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge University Press, 2009. doi: 10.1017/CBO9780511609633.  Google Scholar

[19]

J. C. MattinglyA. M. Stuart and D. J. Higham, Ergodicity for sdes and approximations: Locally Lipschitz vector fields and degenerate noise, Stochastic Processes and Their Applications, 101 (2002), 185-232.  doi: 10.1016/S0304-4149(02)00150-3.  Google Scholar

[20]

P. M. Mazur and I. Oppenheim, Molecular theory of Brownian motion, Physica, 50 (1970), 241-258.  doi: 10.1016/0031-8914(70)90005-4.  Google Scholar

[21]

E. H. Müller, R. Scheichl and T. Shardlow, Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation, Proc. A., 471 (2015), 20140679, 20 pp. doi: 10.1098/rspa.2014.0679.  Google Scholar

[22]

G. A. Pavliotis, Stochastic Processes and Applications. Diffusion Processes, the Fokker-Planck and Langevin Equations, Texts in Applied Mathematics, 60. Springer, New York, 2014. doi: 10.1007/978-1-4939-1323-7.  Google Scholar

[23]

J.-E. Shea and I. Oppenheim, Fokker-Planck equation and Langevin equation for one Brownian particle in a nonequilibrium bath, J. Phys. Chem., 100 (1996), 19035-19042.  doi: 10.1021/jp961605d.  Google Scholar

[24]

R. D. Skeel and J. A. Izaguirre, An impulse integrator for Langevin dynamics, Molecular Physics, 100 (2002), 3885-3891.  doi: 10.1080/0026897021000018321.  Google Scholar

[25]

H.-M. Stiepan and S. Teufel, Semiclassical approximations for Hamiltonians with operator-valued symbols, Comm. Math. Phys., 320 (2013), 821-849.  doi: 10.1007/s00220-012-1650-5.  Google Scholar

[26]

L. Verlet, Computer "Experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159 (1967), 98-103.  doi: 10.1103/PhysRev.159.98.  Google Scholar

[27] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford Univ. Press, New York, 2001.   Google Scholar
[28]

R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys., 9 (1973), 215-220.  doi: 10.1007/BF01008729.  Google Scholar

[29]

M. Zworski, Semiclassical Analysis, Graduate Studies in Mathematics, 138. American Mathematical Society, Providence, RI, 2012. doi: 10.1090/gsm/138.  Google Scholar

show all references

References:
[1]

A. AbdulleG. Vilmart and K. C. Zygalakis, Long time accuracy of Lie-Trotter splitting methods for Langevin dynamics, SIAM Journal on Numerical Analysis, 53 (2015), 1-16.  doi: 10.1137/140962644.  Google Scholar

[2]

A. D. Baczewski and S. D. Bond, Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel, The Journal of Chemical Physics, 139 (2013), 044107. doi: 10.1063/1.4815917.  Google Scholar

[3]

N. Bou-Rabee and H. Owhadi, Long-run accuracy of variational integrators in the stochastic context, SIAM Journal on Numerical Analysis, 48 (2010), 278-297.  doi: 10.1137/090758842.  Google Scholar

[4]

A. BrüngerC. L. Brooks III and M. Karplus, Stochastic boundary conditions for molecular dynamics simulations of ST2 water, Chemical Physics Letters, 105 (1984), 495-500.   Google Scholar

[5]

G. M. Dall'ara, Discreteness of the spectrum of Schrödinger operators with non-negative matrix valued potentials, Journal of Functional Analysis, 268 (2015), 3649-3679.  doi: 10.1016/j.jfa.2014.10.007.  Google Scholar

[6]

G. W. Ford and M. Kac, On the quantum Langevin equation, J. Statist. Phys., 46 (1987), 803-810.  doi: 10.1007/BF01011142.  Google Scholar

[7]

G. W. FordM. Kac and P. Mazur, Statistical mechanics of assemblies of coupled oscillators, J. Mathematical Phys., 6 (1965), 504-515.  doi: 10.1063/1.1704304.  Google Scholar

[8]

M. HairerM. Hutzenthaler and A. Jentzen, Loss of regularity for Kolmogorov equations, The Annals of Probability, 43 (2015), 468-527.  doi: 10.1214/13-AOP838.  Google Scholar

[9]

E. J. Hall, M. A. Katsoulakis and L. Rey-Bellet, Uncertainty quantification for generalized Langevin dynamics, The Journal of Chemical Physics, 145 (2016), 224108. doi: 10.1063/1.4971433.  Google Scholar

[10]

A. Kammonen, P. Plecháč, M. Sandberg and A. Szepessy, Canonical quantum observables for molecular systems approximated by ab initio molecular dynamics, Ann. Henri Poincaré, 19 (2018), 2727–2781. doi: 10.1007/s00023-018-0699-x.  Google Scholar

[11]

D. P. Kroese, T. Taimre and Z. I. Botev, Handbook of monte carlo methods, John Wiley & Sons, 706 (2011). doi: 10.1002/9781118014967.  Google Scholar

[12]

N. V. Krylov, Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, Journal of Functional Analysis, 250 (2007), 521-558.  doi: 10.1016/j.jfa.2007.04.003.  Google Scholar

[13]

R. Kupferman, Fractional kinetics in Kac-Zwanzig heat bath models, Journal of Statistical Physics, 114 (2004), 291-326.  doi: 10.1023/B:JOSS.0000003113.22621.f0.  Google Scholar

[14]

P. Langevin, On the theory of Brownian movement, C. R. Acad. Sci., 146 (1908), 530-533.   Google Scholar

[15]

J. L. Lebowitz and E. Rubin, Dynamical study of Brownian motion, Phys. Rev., 131 (1963), 2381-2396.  doi: 10.1103/PhysRev.131.2381.  Google Scholar

[16]

B. Leimkuhler and C. Matthews, Molecular Dynamics: With Deterministic and Stochastic Numerical Methods, Interdisciplinary Applied Mathematics, 39. Springer, Cham, 2015.  Google Scholar

[17]

T. Leliévre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, Acta Numerica, 25 (2016), 681-880.  doi: 10.1017/S0962492916000039.  Google Scholar

[18]

D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge University Press, 2009. doi: 10.1017/CBO9780511609633.  Google Scholar

[19]

J. C. MattinglyA. M. Stuart and D. J. Higham, Ergodicity for sdes and approximations: Locally Lipschitz vector fields and degenerate noise, Stochastic Processes and Their Applications, 101 (2002), 185-232.  doi: 10.1016/S0304-4149(02)00150-3.  Google Scholar

[20]

P. M. Mazur and I. Oppenheim, Molecular theory of Brownian motion, Physica, 50 (1970), 241-258.  doi: 10.1016/0031-8914(70)90005-4.  Google Scholar

[21]

E. H. Müller, R. Scheichl and T. Shardlow, Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation, Proc. A., 471 (2015), 20140679, 20 pp. doi: 10.1098/rspa.2014.0679.  Google Scholar

[22]

G. A. Pavliotis, Stochastic Processes and Applications. Diffusion Processes, the Fokker-Planck and Langevin Equations, Texts in Applied Mathematics, 60. Springer, New York, 2014. doi: 10.1007/978-1-4939-1323-7.  Google Scholar

[23]

J.-E. Shea and I. Oppenheim, Fokker-Planck equation and Langevin equation for one Brownian particle in a nonequilibrium bath, J. Phys. Chem., 100 (1996), 19035-19042.  doi: 10.1021/jp961605d.  Google Scholar

[24]

R. D. Skeel and J. A. Izaguirre, An impulse integrator for Langevin dynamics, Molecular Physics, 100 (2002), 3885-3891.  doi: 10.1080/0026897021000018321.  Google Scholar

[25]

H.-M. Stiepan and S. Teufel, Semiclassical approximations for Hamiltonians with operator-valued symbols, Comm. Math. Phys., 320 (2013), 821-849.  doi: 10.1007/s00220-012-1650-5.  Google Scholar

[26]

L. Verlet, Computer "Experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159 (1967), 98-103.  doi: 10.1103/PhysRev.159.98.  Google Scholar

[27] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford Univ. Press, New York, 2001.   Google Scholar
[28]

R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys., 9 (1973), 215-220.  doi: 10.1007/BF01008729.  Google Scholar

[29]

M. Zworski, Semiclassical Analysis, Graduate Studies in Mathematics, 138. American Mathematical Society, Providence, RI, 2012. doi: 10.1090/gsm/138.  Google Scholar

Figure 1.  (Left column) unit-volume scaled histogram for the final time position and momentum of the heat bath dynamics for a series of $ m $-values and (right column) corresponding histograms for the Langevin dynamics
Figure 2.  (Left column) heat bath dynamics autocorrelation function $ \mathbb E[X^1(t)X^1(10)] $ for a series of $ m $-values and (right column) corresponding Langevin dynamics autocorrelation functions $ \mathbb E[X^1_L(t)X^1_L(10)] $
Figure 3.  (Left column) heat bath dynamics autocorrelation function $ \mathbb E[P^1(t)P^1(10)] $ for a series of $ m $-values and (right column) corresponding Langevin dynamics autocorrelation functions $ \mathbb E[P^1_L(t)P^1_L(10)] $
[1]

Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic & Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443

[2]

Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99

[3]

Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i

[4]

Cesare Tronci. Momentum maps for mixed states in quantum and classical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 639-656. doi: 10.3934/jgm.2019032

[5]

Dmitry V. Zenkov, Anthony M. Bloch. Dynamics of generalized Euler tops with constraints. Conference Publications, 2001, 2001 (Special) : 398-405. doi: 10.3934/proc.2001.2001.398

[6]

Rémi Lassalle, Jean Claude Zambrini. A weak approach to the stochastic deformation of classical mechanics. Journal of Geometric Mechanics, 2016, 8 (2) : 221-233. doi: 10.3934/jgm.2016005

[7]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[8]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[9]

John Erik Fornæss. Infinite dimensional complex dynamics: Quasiconjugacies, localization and quantum chaos. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 51-60. doi: 10.3934/dcds.2000.6.51

[10]

Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic & Related Models, 2010, 3 (1) : 181-194. doi: 10.3934/krm.2010.3.181

[11]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks & Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[12]

Tomasz Kaczynski, Marian Mrozek, Thomas Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 2016, 3 (1) : 17-50. doi: 10.3934/jcd.2016002

[13]

Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks & Heterogeneous Media, 2015, 10 (4) : 787-807. doi: 10.3934/nhm.2015.10.787

[14]

Xiujuan Wang, Mingshu Peng. Rich dynamics in some generalized difference equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3205-3212. doi: 10.3934/dcdss.2020191

[15]

J. Leonel Rocha, Danièle Fournier-Prunaret, Abdel-Kaddous Taha. Strong and weak Allee effects and chaotic dynamics in Richards' growths. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2397-2425. doi: 10.3934/dcdsb.2013.18.2397

[16]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[17]

Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109

[18]

Brigitte Vallée. Euclidean dynamics. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 281-352. doi: 10.3934/dcds.2006.15.281

[19]

Rabah Labbas, Keddour Lemrabet, Stéphane Maingot, Alexandre Thorel. Generalized linear models for population dynamics in two juxtaposed habitats. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2933-2960. doi: 10.3934/dcds.2019122

[20]

Jianjun Yuan. Derivation of the Quintic NLS from many-body quantum dynamics in $T^2$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1941-1960. doi: 10.3934/cpaa.2015.14.1941

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (26)
  • HTML views (141)
  • Cited by (0)

Other articles
by authors

[Back to Top]