\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Coexistence of competing consumers on a single resource in a hybrid model

  • * Corresponding author: Frithjof Lutscher

    * Corresponding author: Frithjof Lutscher
Abstract Full Text(HTML) Figure(12) Related Papers Cited by
  • The question of whether and how two competing consumers can coexist on a single limiting resource has a long tradition in ecological theory. We build on a recent seasonal (hybrid) model for one consumer and one resource, and we extend it by introducing a second consumer. Consumers reproduce only once per year, the resource reproduces throughout the"summer" season. When we use linear consumer reproduction between years, we find explicit expressions for the trivial and semi-trivial equilibria, and we prove that there is no positive equilibrium generically. When we use non-linear consumer reproduction, we determine conditions for which both semi-trivial equilibria are unstable. We prove that a unique positive equilibrium exists in this case, and we find an explicit analytical expression for it. By linear analysis and numerical simulation, we find bifurcations from the stable equilibrium to population cycles that may appear through period-doubling or Hopf bifurcations. We interpret our results in terms of climate change that changes the length of the"summer" season.

    Mathematics Subject Classification: 92D40, 34A37, 34A05, 34D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Illustration of the unique positive impulsive periodic orbit, corresponding to the unique positive steady state of the discrete map. Parameter values are: $ \mu_1 = 0.7,\; \mu_2 = 0.3813,\; \eta_1 = 10,\; \eta_2 = 7.5811,\; \varepsilon_1 = \varepsilon_2 = 0.8711,\; \xi_1 = \xi_2 = 0.2941,\; \alpha = 5.3063,\; \rho = 0.8324 $

    Figure 2.  The existence range of the positive equilibrium with respect to parameters $ \mu_1 $ and $ \eta_1 $. The upper boundary curve corresponds to condition (39), while the lower curve corresponds to (45). Parameters are as in Figure 1, unless otherwise noted

    Figure 3.  The stability region of the semi-trivial equilibrium in the $ u $-$ v $ plane. Parameters are $ \varepsilon_1 = 0.5307,\; \xi_1 = 0.2941,\; \alpha = 20.3063,\; \rho = 0.8324. $

    Figure 4.  Bifurcation diagram with respect to parameters $ \mu_1 $ and $ \eta_1 $. Other parameters are as in Figure 2, except $ \varepsilon_1 = \varepsilon_2 = 0.5307 $

    Figure 5.  Orbit diagram corresponding to fixing $ \eta_1 = 10 $, see the dashed line in Figure 4. Other parameters are as in Figure 4

    Figure 6.  Bifurcation diagram with respect to parameters $ \mu_1 $ and $ \eta_1 $. Other parameters are as in Figure 4, except $ \alpha = 20.3063 $

    Figure 7.  Orbit diagram corresponding to fixing $ \eta_1 = 30 $, see the dashed line in Figure 5. Other parameters are as in Figure 5

    Figure 8.  Bifurcation diagram with respect to parameters $ \mu_1 $ and $ \eta_1 $. Other parameters are as in Figure 4, except $ \varepsilon_1 = \varepsilon_2 = 0.2307 $

    Figure 9.  Orbit diagram corresponding to fixing $ \eta_1 = 10 $, see the dashed line in Figure 6. Other parameters are as in Figure 6

    Figure 10.  Three species densities with different summer length. Parameters are: $ m_1 = 0.6,\; m_2 = 0.3813,\; \theta_1 = 2,\; \theta_2 = 1.516,\; \delta_1 = \delta_2 = 0.5307,\; \xi_1 = \xi_2 = 0.2941,\; r = 5.3063,\; \rho = 0.8324,\; K = 5,\; a_1 = a_2 = 1 $

    Figure 11.  Three species densities with different summer length. $ \rho,\; \xi_1,\; \xi_2 $ increasing in $ T $ with $ \omega = 0.7 $, other parameters are as in Figure 7, except $ \delta_1 = \delta_2 = 0.0711 $ in right plot

    Figure 12.  Three species coexist with linear reproduction. Parameters are $ \mu_1 = 0.7,\; \mu_2 = 0.5378,\; \eta_1 = 5.9,\; \eta_2 = 7.2284,\; \xi_1 = 0.6681,\; \xi_2 = 0.1788,\; \alpha = 55.0495,\; \rho = 0.9599. $

  • [1] F. R. Adler, Coexistence of two types on a single resource in discrete time, Journal of Mathematical Biology, 28 (1990), 695-713.  doi: 10.1007/BF00160232.
    [2] R. A. Armstrong and R. McGehee, Coexistence of species competing for shared resources, Theoretical Population Biology, 9 (1976), 317-328.  doi: 10.1016/0040-5809(76)90051-4.
    [3] R. A. Armstrong and R. McGehee, Competitive exclusion, The American Naturalist, 115 (1980), 151-170.  doi: 10.1086/283553.
    [4] R. J. H. Beverton and S. J. Holt, On the Dynamics of Exploited Fish Populations, Springer Science & Business Media, 2012. doi: 10.1007/978-94-011-2106-4.
    [5] W. Ebenhöh, Coexistence of an unlimited number of algal species in a model system, Theoretical Population Biology, 34 (1988), 130-144.  doi: 10.1016/0040-5809(88)90038-X.
    [6] H. T. Eskola and K. Parvinen, On the mechanistic underpinning of discrete-time population models with Allee effect, Theoretical Population Biology, 72 (2007), 41-51.  doi: 10.1016/j.tpb.2007.03.004.
    [7] E. Funasaki and M. Kot, Invasion and chaos in a periodically pulsed mass-action chemostat, Theoretical Population Biology, 44 (1993), 203-224.  doi: 10.1006/tpbi.1993.1026.
    [8] S. A. H. Geritz and É. Kisdi, On the mechanistic underpinning of discrete-time population models with complex dynamics, Journal of Theoretical Biology, 228 (2004), 261-269.  doi: 10.1016/j.jtbi.2004.01.003.
    [9] J. P. Grover and F. B. Wang, Competition and allelopathy with resource storage: Two resources, Journal of Theoretical Biology, 351 (2014), 9-24.  doi: 10.1016/j.jtbi.2014.02.013.
    [10] G. Hardin, The competitive exclusion principle, Science, 131 (1960), 1292-1297.  doi: 10.1126/science.131.3409.1292.
    [11] Z. M. He and B. Li, Complex dynamic behavior of a discrete-time predator-prey system of Holling-III type, Advances in Difference Equations, 2014 (2014), 13 pp. doi: 10.1186/1687-1847-2014-180.
    [12] S. B. HsuS. P. Hubbell and P. Waltman, A contribution to the theory of competing predators, Ecological Monographs, 48 (1978), 337-349. 
    [13] S. B. HsuS. P. Hubbell and P. Waltman, Competing predators, SIAM Journal on Applied Mathematics, 35 (1978), 617-625.  doi: 10.1137/0135051.
    [14] Z. J. Jing and J. P. Yang, Bifurcation and chaos in discrete-time predator-prey system, Chaos Solitons Fractals, 27 (2006), 259-277.  doi: 10.1016/j.chaos.2005.03.040.
    [15] Y. Kang and P. Chesson, Relative nonlinearity and permanence, Theoretical Population Biology, 78 (2010), 26-35.  doi: 10.1016/j.tpb.2010.04.002.
    [16] Y. Kang and H. Smith, Global dynamics of a discrete two-species lottery-Ricker competition model, Journal of Biological Dynamics, 6 (2012), 358-376.  doi: 10.1080/17513758.2011.586064.
    [17] A. L. Koch, Competitive coexistence of two predators utilizing the same prey under constant environmental conditions, Journal of Theoretical Biology, 44 (1974), 387-395.  doi: 10.1016/0022-5193(74)90169-6.
    [18] M. KotElements of Mathematical Ecology, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511608520.
    [19] J. J. Kuang and P. Chesson, Predation-competition interactions for seasonally recruiting species, The American Naturalist, 171 (2008), E119–E133. doi: 10.1086/527484.
    [20] G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems, Springer Science & Business Media, 2013. doi: 10.1007/978-1-4614-7276-6.
    [21] S. A. Levin, Community equilibria and stability, and an extension of the competitive exclusion principle, The American Naturalist, 104 (1970), 413-423.  doi: 10.1086/282676.
    [22] L. Mailleret and V. Lemesle, A note on semi-discrete modelling in the life sciences, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367 (2009), 4779-4799.  doi: 10.1098/rsta.2009.0153.
    [23] E. PachepskyR. M. Nisbet and W. W. Murdoch, Between discrete and continuous: Consumer-resource dynamics with synchronized reproduction, Ecology, 89 (2008), 280-288.  doi: 10.1890/07-0641.1.
    [24] Y. Samia and F. Lutscher, Coexistence and spread of competitors in heterogeneous landscapes, Bulletin of Mathematical Biology, 72 (2010), 2089-2112.  doi: 10.1007/s11538-010-9529-0.
    [25] J. ShangB. T. Li and M. R. Barnard, Bifurcations in a discrete time model composed of Beverton-Holt function and Ricker function, Mathematical Biosciences, 263 (2015), 161-168.  doi: 10.1016/j.mbs.2015.02.014.
    [26] R. J. Smith and G. S. K. Wolkowicz., Analysis of a model of the nutrient driven self-cycling fermentation process, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 11 (2004), 239-266. 
    [27] K. StaňkováA. Abate and M. W. Sabelis, Irreversible prey diapause as an optimal strategy of a physiologically extended Lotka-Volterra model, Journal of Mathematical Biology, 66 (2013), 767-794.  doi: 10.1007/s00285-012-0599-5.
    [28] A. Szilágyi and G. Meszéna, Coexistence in a fluctuating environment by the effect of relative nonlinearity: A minimal model, Journal of Theoretical Biology, 267 (2010), 502-512.  doi: 10.1016/j.jtbi.2010.09.020.
    [29] M. Turelli, A reexamination of stability in randomly varying versus deterministic environments with comments on stochastic theory of limiting similarity, Theoretical Population Biology, 13 (1978), 244-267.  doi: 10.1016/0040-5809(78)90045-X.
    [30] V. Volterra, Variazioni e Fluttuazioni del Numero D'individui in Specie Animali Conviventi, C. Ferrari, 1927.
    [31] V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, ICES Journal of Marine Science, 3 (1928), 3-51.  doi: 10.1093/icesjms/3.1.3.
    [32] F. Y. Wang and G. P. Pang, Competition in a chemostat with Beddington-DeAngelis growth rates and periodic pulsed nutrient, Journal of Mathematical Chemistry, 44 (2008), 691-710.  doi: 10.1007/s10910-008-9346-y.
    [33] X. Y. Wang and F. Lutscher, Turing patterns in a predator-prey model with seasonality, Journal of Mathematical Biology, 78 (2019), 711-737.  doi: 10.1007/s00285-018-1289-8.
    [34] S. L. Yuan, Y. Zhao and A. F. Xiao, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with pulsed input and washout, Mathematical Problems in Engineering, 2009 (2009), 204632. doi: 10.1155/2009/204632.
    [35] S. L. YuanW. G. Zhang and Y. Zhao, Bifurcation analysis of a model of plasmid-bearing, plasmid-free competition in a pulsed chemostat with an internal inhibitor, IMA Journal of Applied Mathematics, 76 (2011), 277-297.  doi: 10.1093/imamat/hxq036.
    [36] X. ZhouX. Song and X. Shi, Analysis of competitive chemostat models with the Beddington-DeAngelis functional response and impulsive effect, Applied Mathematical Modelling, 31 (2007), 2299-2312. 
  • 加载中

Figures(12)

SHARE

Article Metrics

HTML views(1819) PDF downloads(541) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return