January  2021, 26(1): 337-366. doi: 10.3934/dcdsb.2020141

The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures

1. 

Department of Mathematics & The Institute for Scientific Computing, and Applied Mathematics, Indiana University, Bloomington, Indiana 47405, USA

2. 

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607, USA

* Corresponding author: Andrea Giorgini

Received  January 2020 Published  April 2020

We study the well-posedness for the mildly compressible Navier-Stokes-Cahn-Hilliard system with non-constant viscosity and Landau potential in two and three dimensional domains.

Citation: Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141
References:
[1]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506.  doi: 10.1007/s00205-008-0160-2.  Google Scholar

[2]

H. Abels, Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Comm. Math. Phys., 289 (2009), 45-73.  doi: 10.1007/s00220-009-0806-4.  Google Scholar

[3]

H. Abels, Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow, SIAM J. Math. Anal., 44 (2012), 316-340.  doi: 10.1137/110829246.  Google Scholar

[4]

H. AbelsD. Depner and H. Garcke, Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., 15 (2013), 453-480.  doi: 10.1007/s00021-012-0118-x.  Google Scholar

[5]

H. Abels and E. Feireisl, On a diffuse interface model for two-phase flow of compressible viscous fluids, Indiana Univ. Math. J., 57 (2008), 659-698.  doi: 10.1512/iumj.2008.57.3391.  Google Scholar

[6]

H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013, 40 pp. doi: 10.1142/S0218202511500138.  Google Scholar

[7]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[8]

A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications., Applied Mathematical Sciences, 151. Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-12905-0.  Google Scholar

[9]

F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation, Asympt. Anal., 20 (1999), 175-212.   Google Scholar

[10]

F. Boyer, A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 31 (2002), 41-68.  doi: 10.1016/S0045-7930(00)00031-1.  Google Scholar

[11]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[12]

C. S. Cao and C. G. Gal, Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity, 25 (2012), 3211-3234.  doi: 10.1088/0951-7715/25/11/3211.  Google Scholar

[13]

L. CherfilsE. FeireislM. MichálekA. MiranvilleM. Petcu and D. Pražák, The compressible Navier-Stokes-Cahn-Hilliard equations with dynamic boundary conditions, Math. Models Methods Appl. Sci., 29 (2019), 2557-2584.  doi: 10.1142/S0218202519500544.  Google Scholar

[14]

F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Universitext. Springer, London, EDP Sciences, Les Ulis, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[15]

H. DingP. D. M. Spelt and C. Shu, Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226 (2007), 2078-2095.   Google Scholar

[16]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436.  doi: 10.1016/j.anihpc.2009.11.013.  Google Scholar

[17]

C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chinese Ann. Math. Ser. B, 31 (2010), 655-678.  doi: 10.1007/s11401-010-0603-6.  Google Scholar

[18]

C. G. Gal, M. Grasselli and A. Miranville, Cahn-Hilliard-Navier-Stokes systems with moving contact lines, Calc. Var. Partial Differential Equations, 55 (2016), Art. 50, 47 pp. doi: 10.1007/s00526-016-0992-9.  Google Scholar

[19]

C. G. GalM. Grasselli and H. Wu, Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities, Arch. Ration. Mech. Anal., 234 (2019), 1-56.  doi: 10.1007/s00205-019-01383-8.  Google Scholar

[20]

M.-H. Giga, A. Kirshtein and C. Liu, Variational modeling and complex fluids, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 73–113. doi: 10.1007/978-3-319-13344-7_2.  Google Scholar

[21]

A. GiorginiA. Miranville and R. Temam, Uniqueness and regularity for the Navier-Stokes-Cahn-Hilliard system, SIAM J. Math. Anal., 51 (2019), 2535-2574.  doi: 10.1137/18M1223459.  Google Scholar

[22]

M. E. GurtinD. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831.  doi: 10.1142/S0218202596000341.  Google Scholar

[23] P. G. Lemarié-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016.  doi: 10.1201/b19556.  Google Scholar
[24]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[25]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn–Hilliard fluids and topological transitions, Proc. Roy. Soc. Lond. A, 454 (1998), 2617-2654.  doi: 10.1098/rspa.1998.0273.  Google Scholar

[26]

V. N. Starovoĭtov, Model of the motion of a two-component liquid with allowance of capillary forces, J. Appl. Mech. Tech. Phys., 35 (1994), 891-897.  doi: 10.1007/BF02369582.  Google Scholar

[27]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[28]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, 2001. doi: 10.1090/chel/343.  Google Scholar

[29]

G. Tomassetti, An interpretation of Temam's stabilization term in the quasi-incompressible Navier-Stokes system, arXiv: 1909.11168. Google Scholar

[30]

K. E. Wardle and T. Lee, Finite element lattice Boltzmann simulations of free surface flow in a concentric cylinder, Comput. Math. Appl., 65 (2013), 230-238.  doi: 10.1016/j.camwa.2011.09.020.  Google Scholar

show all references

References:
[1]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506.  doi: 10.1007/s00205-008-0160-2.  Google Scholar

[2]

H. Abels, Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Comm. Math. Phys., 289 (2009), 45-73.  doi: 10.1007/s00220-009-0806-4.  Google Scholar

[3]

H. Abels, Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow, SIAM J. Math. Anal., 44 (2012), 316-340.  doi: 10.1137/110829246.  Google Scholar

[4]

H. AbelsD. Depner and H. Garcke, Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., 15 (2013), 453-480.  doi: 10.1007/s00021-012-0118-x.  Google Scholar

[5]

H. Abels and E. Feireisl, On a diffuse interface model for two-phase flow of compressible viscous fluids, Indiana Univ. Math. J., 57 (2008), 659-698.  doi: 10.1512/iumj.2008.57.3391.  Google Scholar

[6]

H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013, 40 pp. doi: 10.1142/S0218202511500138.  Google Scholar

[7]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[8]

A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications., Applied Mathematical Sciences, 151. Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-12905-0.  Google Scholar

[9]

F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation, Asympt. Anal., 20 (1999), 175-212.   Google Scholar

[10]

F. Boyer, A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 31 (2002), 41-68.  doi: 10.1016/S0045-7930(00)00031-1.  Google Scholar

[11]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[12]

C. S. Cao and C. G. Gal, Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity, 25 (2012), 3211-3234.  doi: 10.1088/0951-7715/25/11/3211.  Google Scholar

[13]

L. CherfilsE. FeireislM. MichálekA. MiranvilleM. Petcu and D. Pražák, The compressible Navier-Stokes-Cahn-Hilliard equations with dynamic boundary conditions, Math. Models Methods Appl. Sci., 29 (2019), 2557-2584.  doi: 10.1142/S0218202519500544.  Google Scholar

[14]

F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Universitext. Springer, London, EDP Sciences, Les Ulis, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[15]

H. DingP. D. M. Spelt and C. Shu, Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226 (2007), 2078-2095.   Google Scholar

[16]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436.  doi: 10.1016/j.anihpc.2009.11.013.  Google Scholar

[17]

C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chinese Ann. Math. Ser. B, 31 (2010), 655-678.  doi: 10.1007/s11401-010-0603-6.  Google Scholar

[18]

C. G. Gal, M. Grasselli and A. Miranville, Cahn-Hilliard-Navier-Stokes systems with moving contact lines, Calc. Var. Partial Differential Equations, 55 (2016), Art. 50, 47 pp. doi: 10.1007/s00526-016-0992-9.  Google Scholar

[19]

C. G. GalM. Grasselli and H. Wu, Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities, Arch. Ration. Mech. Anal., 234 (2019), 1-56.  doi: 10.1007/s00205-019-01383-8.  Google Scholar

[20]

M.-H. Giga, A. Kirshtein and C. Liu, Variational modeling and complex fluids, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 73–113. doi: 10.1007/978-3-319-13344-7_2.  Google Scholar

[21]

A. GiorginiA. Miranville and R. Temam, Uniqueness and regularity for the Navier-Stokes-Cahn-Hilliard system, SIAM J. Math. Anal., 51 (2019), 2535-2574.  doi: 10.1137/18M1223459.  Google Scholar

[22]

M. E. GurtinD. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831.  doi: 10.1142/S0218202596000341.  Google Scholar

[23] P. G. Lemarié-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016.  doi: 10.1201/b19556.  Google Scholar
[24]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[25]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn–Hilliard fluids and topological transitions, Proc. Roy. Soc. Lond. A, 454 (1998), 2617-2654.  doi: 10.1098/rspa.1998.0273.  Google Scholar

[26]

V. N. Starovoĭtov, Model of the motion of a two-component liquid with allowance of capillary forces, J. Appl. Mech. Tech. Phys., 35 (1994), 891-897.  doi: 10.1007/BF02369582.  Google Scholar

[27]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[28]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, 2001. doi: 10.1090/chel/343.  Google Scholar

[29]

G. Tomassetti, An interpretation of Temam's stabilization term in the quasi-incompressible Navier-Stokes system, arXiv: 1909.11168. Google Scholar

[30]

K. E. Wardle and T. Lee, Finite element lattice Boltzmann simulations of free surface flow in a concentric cylinder, Comput. Math. Appl., 65 (2013), 230-238.  doi: 10.1016/j.camwa.2011.09.020.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[4]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[5]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[6]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[7]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[8]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[9]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[10]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[12]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[13]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[14]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[15]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[16]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[17]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[18]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[19]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[20]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (195)
  • HTML views (381)
  • Cited by (0)

Other articles
by authors

[Back to Top]